【力扣hot100题】(075)数据流的中位数

一开始只建立了一个优先队列,每次查询中位数时都要遍历一遍于是喜提时间超限,看了答案才恍然大悟原来还有这么聪明的办法。

方法是建立两个优先队列,一个大根堆一个小根堆,大根堆记录较小的数,小根堆记录较大的数。

每次加入元素时首先和大根堆最大的数进行比较,若元素更小则加入大根堆,否则加入小根堆,接着比较大根堆小根堆的大小,若大根堆比小根堆大超过一个元素(默认元素总数为奇数时大根堆多一个元素),则将大根堆最大元素加入小根堆并从大根堆移除那个元素;若小根堆比大根堆大时同理。

找出中位数时若总数为偶数(大根堆小根堆大小相等),则取大根堆最大元素和小根堆最小元素相加除以二;若总数为奇数(大根堆多一个元素),则直接取大根堆最大的元素。

好聪明的办法!!

另外小根堆构造方法是priority_queue<int,vector<int>,greater<int>> minq;,其中greater是小元素在前的比较函数。(大根堆中这个函数是less<int>)

cpp 复制代码
class MedianFinder {
public:
    priority_queue<int> maxq; //大根堆,记录较小的数
    priority_queue<int,vector<int>,greater<int>> minq; //小根堆,记录较大的数
    MedianFinder() {
    }
    
    void addNum(int num) {
        if(maxq.empty()||num<maxq.top()){
            maxq.emplace(num);
            if(maxq.size()>minq.size()+1){
                minq.emplace(maxq.top());
                maxq.pop();
            }
        }
        else{
            minq.emplace(num);
            if(minq.size()>maxq.size()){
                maxq.emplace(minq.top());
                minq.pop();
            }
        }

    }
    
    double findMedian() {
        if(maxq.size()==minq.size()) return (maxq.top()+minq.top())/2.0;
        else return maxq.top();
    }
};

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder* obj = new MedianFinder();
 * obj->addNum(num);
 * double param_2 = obj->findMedian();
 */
相关推荐
DIY机器人工房16 分钟前
一个可以检测本机的字节顺序,并对任意数据进行字节顺序的反转操作的代码。
嵌入式硬件·算法·嵌入式·diy机器人工房
杰克尼2 小时前
11. 盛最多水的容器
算法·leetcode·职场和发展
程序员Xu4 小时前
【OD机试题解法笔记】查找接口成功率最优时间段
笔记·算法
技术思考者4 小时前
Leetcode - 反转字符串
数据结构·算法·leetcode
SKYDROID云卓小助手5 小时前
无人设备遥控器之多设备协同技术篇
网络·人工智能·嵌入式硬件·算法·信号处理
熬了夜的程序员6 小时前
【华为机试】34. 在排序数组中查找元素的第一个和最后一个位置
数据结构·算法·华为od·华为·面试·golang
phltxy6 小时前
ArrayList与顺序表
java·算法
小拇指~7 小时前
梯度下降的基本原理
人工智能·算法·计算机视觉
艾莉丝努力练剑7 小时前
【C/C++】类和对象(上):(一)类和结构体,命名规范——两大规范,新的作用域——类域
java·c语言·开发语言·c++·学习·算法
TDengine (老段)8 小时前
TDengine 中 TDgp 中添加机器学习模型
大数据·数据库·算法·机器学习·数据分析·时序数据库·tdengine