【力扣hot100题】(075)数据流的中位数

一开始只建立了一个优先队列,每次查询中位数时都要遍历一遍于是喜提时间超限,看了答案才恍然大悟原来还有这么聪明的办法。

方法是建立两个优先队列,一个大根堆一个小根堆,大根堆记录较小的数,小根堆记录较大的数。

每次加入元素时首先和大根堆最大的数进行比较,若元素更小则加入大根堆,否则加入小根堆,接着比较大根堆小根堆的大小,若大根堆比小根堆大超过一个元素(默认元素总数为奇数时大根堆多一个元素),则将大根堆最大元素加入小根堆并从大根堆移除那个元素;若小根堆比大根堆大时同理。

找出中位数时若总数为偶数(大根堆小根堆大小相等),则取大根堆最大元素和小根堆最小元素相加除以二;若总数为奇数(大根堆多一个元素),则直接取大根堆最大的元素。

好聪明的办法!!

另外小根堆构造方法是priority_queue<int,vector<int>,greater<int>> minq;,其中greater是小元素在前的比较函数。(大根堆中这个函数是less<int>)

cpp 复制代码
class MedianFinder {
public:
    priority_queue<int> maxq; //大根堆,记录较小的数
    priority_queue<int,vector<int>,greater<int>> minq; //小根堆,记录较大的数
    MedianFinder() {
    }
    
    void addNum(int num) {
        if(maxq.empty()||num<maxq.top()){
            maxq.emplace(num);
            if(maxq.size()>minq.size()+1){
                minq.emplace(maxq.top());
                maxq.pop();
            }
        }
        else{
            minq.emplace(num);
            if(minq.size()>maxq.size()){
                maxq.emplace(minq.top());
                minq.pop();
            }
        }

    }
    
    double findMedian() {
        if(maxq.size()==minq.size()) return (maxq.top()+minq.top())/2.0;
        else return maxq.top();
    }
};

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder* obj = new MedianFinder();
 * obj->addNum(num);
 * double param_2 = obj->findMedian();
 */
相关推荐
LXS_3571 分钟前
STL - 函数对象
开发语言·c++·算法
aini_lovee5 分钟前
基于粒子群算法(PSO)优化BP神经网络权值与阈值的实现
神经网络·算法
jiayong2310 分钟前
Vue2 与 Vue3 核心原理对比 - 面试宝典
vue.js·面试·职场和发展
老鼠只爱大米13 分钟前
LeetCode经典算法面试题 #230:二叉搜索树中第K小的元素(递归法、迭代法、Morris等多种实现方案详细解析)
算法·leetcode·二叉搜索树·二叉树遍历·第k小的元素·morris遍历
星期五不见面16 分钟前
嵌入式学习!(一)C++学习-leetcode(21)-26/1/29
学习·算法·leetcode
2501_9413220321 分钟前
通信设备零部件识别与检测基于改进YOLOv8-HAFB-2算法实现
算法·yolo
modelmd29 分钟前
【递归算法】汉诺塔
python·算法
2401_8384725135 分钟前
C++中的装饰器模式实战
开发语言·c++·算法
白中白1213842 分钟前
算法题-06
算法
珍珠是蚌的眼泪1 小时前
LeetCode_二叉树1
leetcode·二叉树·层序遍历·前序遍历·中序遍历·后续遍历