opencv中mat深拷贝和浅拷贝

1. 浅拷贝(Shallow Copy)

  • 特点

    • 共享数据内存,新对象和原对象指向同一块内存数据。

    • 修改任一对象的数据会影响另一个对象(因为内存共享)。

    • 高效(仅复制矩阵头信息,不复制实际数据)。

  • 实现方式

    • 直接赋值

      复制代码
      cv::Mat img1 = imread("image.jpg");
      cv::Mat img2 = img1;  // 浅拷贝
    • 使用 clone() 的误用

      若对浅拷贝后的对象调用 clone(),仍需注意原对象是否被修改。

  • 示例

    复制代码
    cv::Mat mat1 = (cv::Mat_<int>(2,2) << 1, 2, 3, 4);
    cv::Mat mat2 = mat1;     // 浅拷贝
    mat2.at<int>(0,0) = 99;  // 修改 mat2 会影响 mat1
    
    std::cout << mat1 << std::endl;  // 输出 [99, 2; 3, 4]

2. 深拷贝(Deep Copy)

  • 特点

    • 独立分配内存,新对象和原对象完全隔离。

    • 修改任一对象不会影响另一个对象。

    • 开销较大(需复制全部数据)。

  • 实现方式

    • clone() 方法

      复制代码
      cv::Mat img1 = imread("image.jpg");
      cv::Mat img2 = img1.clone();  // 深拷贝
    • copyTo() 方法

      复制代码
      cv::Mat img2;
      img1.copyTo(img2);  // 深拷贝
  • 示例

    复制代码
    cv::Mat mat1 = (cv::Mat_<int>(2,2) << 1, 2, 3, 4);
    cv::Mat mat2 = mat1.clone();  // 深拷贝
    mat2.at<int>(0,0) = 99;       // 修改 mat2 不会影响 mat1
    
    std::cout << mat1 << std::endl;  // 输出 [1, 2; 3, 4]

3. 关键区别总结

特性 浅拷贝 深拷贝
内存共享 是(修改互相影响) 否(数据独立)
性能 高效(仅复制矩阵头) 较慢(复制全部数据)
实现方法 = 赋值 clone()copyTo()
适用场景 只读操作或临时引用 需独立修改数据时

4. 特殊情况与注意事项

(1) ROI(Region of Interest)的浅拷贝

  • 通过 cv::Mat roi = img(cv::Rect(x,y,w,h)) 创建的 ROI 是浅拷贝。

  • 修改 ROI 会影响原图:

    复制代码
    cv::Mat image = imread("image.jpg");
    cv::Mat roi = image(cv::Rect(0,0,100,100));  // ROI 浅拷贝
    roi.setTo(0);  // 原图中对应区域也会变黑!

(2) copyTo() 的掩膜(Mask)功能

  • copyTo() 可结合掩膜实现选择性复制:

    复制代码
    cv::Mat dst;
    src.copyTo(dst, mask);  // 仅复制 mask 非零区域

(3) 多通道数据的拷贝

  • 深拷贝会复制所有通道数据,保持完整独立性:

    复制代码
    cv::Mat color_img = imread("color.jpg");
    cv::Mat deep_copy = color_img.clone();  // 所有通道独立

5. 如何选择拷贝方式?

  • 用浅拷贝

    • 需要快速传递数据且不修改内容时(如函数参数传递只读数据)。

    • 操作 ROI 时(避免内存重复分配)。

  • 用深拷贝

    • 需独立修改数据时(如滤波、变换等操作)。

    • 避免函数内修改影响外部数据时。


代码验证工具

可以通过以下代码检查两个矩阵是否共享内存:

复制代码
bool isSameData(const cv::Mat& a, const cv::Mat& b) {
    return a.data == b.data;  // 返回 true 表示浅拷贝
}

掌握深/浅拷贝的区别能有效避免 OpenCV 中的内存错误和逻辑问题!

相关推荐
Evand J1 小时前
MATLAB程序演示与编程思路,相对导航,四个小车的形式,使用集中式扩展卡尔曼滤波(fullyCN-EKF)
人工智能·算法
知来者逆2 小时前
在与大语言模型交互中的礼貌现象:技术影响、社会行为与文化意义的多维度探讨
人工智能·深度学习·语言模型·自然语言处理·llm
xwz小王子4 小时前
Taccel:一个高性能的GPU加速视触觉机器人模拟平台
人工智能·机器人
深空数字孪生5 小时前
AI时代的数据可视化:未来已来
人工智能·信息可视化
Icoolkj5 小时前
探秘 Canva AI 图像生成器:重塑设计创作新范式
人工智能
魔障阿Q6 小时前
windows使用bat脚本激活conda环境
人工智能·windows·python·深度学习·conda
Wnq100726 小时前
巡检机器人数据处理技术的创新与实践
网络·数据库·人工智能·机器人·巡检机器人
Eric.Lee20216 小时前
数据集-目标检测系列- 冥想 检测数据集 close_eye>> DataBall
人工智能·目标检测·计算机视觉·yolo检测·眼睛开闭状态检测识别
胡乱儿起个名7 小时前
Relay算子注册(在pytorch.py端调用)
c++·人工智能·tvm·编译器·ai编译器
Dxy12393102167 小时前
Python+OpenCV实现手势识别与动作捕捉:技术解析与应用探索
开发语言·python·opencv