如何启动spark

解决:spark的bin目录下,无法启动spark问题

root@hadoop7 sbin\]# ./start-all.sh ./start-all.sh:行29: /root/install/spark-2.4.0-bin-hadoop2.7/sbin/spark-config.sh: 没有那个文件或目录 ./start-all.sh:行32: /root/install/spark-2.4.0-bin-hadoop2.7/sbin/start-master.sh: 没有那个文件或目录 ./start-all.sh:行35: /root/install/spark-2.4.0-bin-hadoop2.7/sbin/start-slaves.sh: 没有那个文件或目录 *** ** * ** *** \[root@hadoop7 \~\]# jps 1357 Jps \[root@hadoop7 \~\]# start-all.sh This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh Starting namenodes on \[hadoop7

hadoop7: starting namenode, logging to /root/install/hadoop-2.7.7/logs/hadoop-root-namenode-hadoop7.out

localhost: starting datanode, logging to /root/install/hadoop-2.7.7/logs/hadoop-root-datanode-hadoop7.out

Starting secondary namenodes [0.0.0.0]

0.0.0.0: starting secondarynamenode, logging to /root/install/hadoop-2.7.7/logs/hadoop-root-secondarynamenode-hadoop7.out

starting yarn daemons

starting resourcemanager, logging to /root/install/hadoop-2.7.7/logs/yarn-root-resourcemanager-hadoop7.out

localhost: starting nodemanager, logging to /root/install/hadoop-2.7.7/logs/yarn-root-nodemanager-hadoop7.out

root@hadoop7 \~\]# jps 2850 Jps 1763 DataNode 2515 NodeManager 1564 NameNode 2268 ResourceManager 2014 SecondaryNameNode \[root@hadoop7 \~\]# zkServer.sh start ZooKeeper JMX enabled by default Using config: /root/install/zookeeper-3.4.14/bin/../conf/zoo.cfg Starting zookeeper ... STARTED *** ** * ** *** \[root@hadoop7 spark-2.4.5-bin-hadoop2.7\]# cd conf/ \[root@hadoop7 conf\]# ls docker.properties.template hive-site.xml metrics.properties.template slaves.template spark-env.sh fairscheduler.xml.template log4j.properties.template slaves spark-defaults.conf.template spark-env.sh.template \[root@hadoop7 conf\]# vi spark-env.sh //把hadoop6 改为了hadoop7 \[root@hadoop7 conf\]# \[root@hadoop7 conf\]# cd .. \[root@hadoop7 spark-2.4.5-bin-hadoop2.7\]# cd logs/ \[root@hadoop7 logs\]# ls spark-root-org.apache.spark.deploy.master.Master-1-hadoop4.out spark-root-org.apache.spark.deploy.worker.Worker-1-hadoop4.out spark-root-org.apache.spark.deploy.master.Master-1-hadoop4.out.1 spark-root-org.apache.spark.deploy.worker.Worker-1-hadoop4.out.1 spark-root-org.apache.spark.deploy.master.Master-1-hadoop4.out.2 spark-root-org.apache.spark.deploy.worker.Worker-1-hadoop4.out.2 spark-root-org.apache.spark.deploy.master.Master-1-hadoop4.out.3 spark-root-org.apache.spark.deploy.worker.Worker-1-hadoop4.out.3 spark-root-org.apache.spark.deploy.master.Master-1-hadoop4.out.4 spark-root-org.apache.spark.deploy.worker.Worker-1-hadoop5.out spark-root-org.apache.spark.deploy.master.Master-1-hadoop5.out spark-root-org.apache.spark.deploy.worker.Worker-1-hadoop5.out.1 spark-root-org.apache.spark.deploy.master.Master-1-hadoop5.out.1 spark-root-org.apache.spark.deploy.worker.Worker-1-hadoop5.out.2 spark-root-org.apache.spark.deploy.master.Master-1-hadoop5.out.2 spark-root-org.apache.spark.deploy.worker.Worker-1-hadoop5.out.3 spark-root-org.apache.spark.deploy.master.Master-1-hadoop5.out.3 spark-root-org.apache.spark.deploy.worker.Worker-1-hadoop5.out.4 spark-root-org.apache.spark.deploy.master.Master-1-hadoop5.out.4 spark-root-org.apache.spark.deploy.worker.Worker-1-hadoop5.out.5 spark-root-org.apache.spark.deploy.master.Master-1-hadoop5.out.5 spark-root-org.apache.spark.deploy.worker.Worker-1-hadoop6.out spark-root-org.apache.spark.deploy.master.Master-1-hadoop6.out spark-root-org.apache.spark.deploy.worker.Worker-1-hadoop6.out.1 spark-root-org.apache.spark.deploy.master.Master-1-hadoop6.out.1 \[root@hadoop7 logs\]# rm -rf \* \[root@hadoop7 logs\]# cd .. \[root@hadoop7 spark-2.4.5-bin-hadoop2.7\]# cd sbin/ \[root@hadoop7 sbin\]# ls slaves.sh start-all.sh start-mesos-shuffle-service.sh start-thriftserver.sh stop-mesos-dispatcher.sh stop-slaves.sh spark-config.sh start-history-server.sh start-shuffle-service.sh stop-all.sh stop-mesos-shuffle-service.sh stop-thriftserver.sh spark-daemon.sh start-master.sh start-slave.sh stop-history-server.sh stop-shuffle-service.sh spark-daemons.sh start-mesos-dispatcher.sh start-slaves.sh stop-master.sh stop-slave.sh \[root@hadoop7 sbin\]# ./start-all.sh starting org.apache.spark.deploy.master.Master, logging to /root/install/spark-2.4.5-bin-hadoop2.7/logs/spark-root-org.apache.spark.deploy.master.Master-1-hadoop7.out localhost: starting org.apache.spark.deploy.worker.Worker, logging to /root/install/spark-2.4.5-bin-hadoop2.7/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-hadoop7.out 就启动成功了

相关推荐
动力暖暖9 分钟前
Flink2.0及Flink-operater在K8S上部署
大数据·flink·kubernetes
武子康33 分钟前
AI炼丹日志-24 - MCP 自动操作 提高模型上下文能力 Cursor + Sequential Thinking Server Memory
大数据·人工智能·算法·机器学习·ai·语言模型·自然语言处理
板鸭〈小号〉1 小时前
进程间通信及管道(理论)
运维·服务器
regedit801 小时前
Centos7升级openssl
linux·运维·服务器
世冠科技2 小时前
世冠科技亮相中汽中心科技周MBDE会议,共探汽车研发数字化转型新路径
大数据·人工智能·matlab·软件工程
bigdata-rookie2 小时前
kafka SASL/PLAIN 认证及 ACL 权限控制
大数据·运维·服务器·分布式·zookeeper·kafka
藥瓿亭2 小时前
2024 CKA模拟系统制作 | Step-By-Step | 18、题目搭建-备份还原Etcd
linux·运维·服务器·ubuntu·kubernetes·etcd·cka
洁✘2 小时前
lvs-keepalived高可用群集
linux·服务器·lvs
geneculture3 小时前
技术-工程-管用养修保-智能硬件-智能软件五维黄金序位模型
大数据·人工智能·算法·数学建模·智能硬件·工程技术·融智学的重要应用
北漂老男孩3 小时前
Flink Table API 编程入门实践
大数据·flink·学习方法