大模型day1 - 什么是GPT

什么是GPT

全称 Generative Pre-trained Transformer 是一种基于 Transformer 架构的大规模 预训练 语言模型,由OpenAI研发,但GPT仅仅只是借鉴了Transformer 中 Decoder 的部分,并且做了升级

Transformer 架构

Transformer架构 是一种用于处理序列数据(比如文本、语音)的深度学习模型,它的核心思想是"自我关注 "(Self-Attention),可以理解为"聪明地抓重点"
Transformer的核心

  • 并行处理所有词:同时看到整个句子,而不是逐个词处理。
  • 自注意力机制:让模型自动判断句子中哪些词更重要,并动态调整它们之间的关系

Encoder-Decoder

  • 只有Encoder的模型(如BERT):适合理解任务(文本分类、实体识别),但不能生成文本。
  • 只有Decoder的模型(如GPT):擅长生成文本(写文章、聊天),但对输入的理解可能不如Encoder深入。
  • Encoder-Decoder结合(如Transformer、T5):两者优势兼顾,适合需要"先理解再生成"的任务。

预训练

简单来说就是提前进行训练,从大量无标注的数据中学习通用能力
预训练的特点

  • 自监督学习:无需人工标注,模型通过"填空""预测下一词"等任务从海量文本中自学。
  • 大数据训练:用TB级文本(如书籍、网页)训练,覆盖多领域知识。
  • 迁移学习:先学通用语言规律,再微调适配具体任务(如翻译、问答)。
  • 超大模型:参数规模达百亿甚至万亿级(如GPT-3有1750亿参数),能力更强。
  • 多任务通用:同一模型通过微调或提示(Prompt)完成不同任务(写文章、写代码、翻译等)。
  • Few-shot学习:仅需少量示例即可适应新任务,无需大量标注数据。
  • 高计算成本:训练耗资巨大(如GPT-3训练花费1200万美元),依赖高端GPU。

微调

让预训练模型(比如GPT、BERT)在少量特定任务数据上"再学习",使它从"通才"变成"专才"。

  • 微调只要少量的数据就可以获取不错的效果
  • 微调成本较低,可以在单卡上运行
相关推荐
前端小盆友2 天前
从零实现一个GPT 【React + Express】--- 【3】解析markdown,处理模型记忆
gpt·react.js
资讯分享周3 天前
Alpha系统联结大数据、GPT两大功能,助力律所管理降本增效
大数据·gpt
猫头虎3 天前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
北京地铁1号线4 天前
GPT-2论文阅读:Language Models are Unsupervised Multitask Learners
论文阅读·gpt·语言模型
前端小盆友5 天前
从零实现一个GPT 【React + Express】--- 【2】实现对话流和停止生成
前端·gpt·react.js
牛大了202315 天前
【LLM学习】2-简短学习BERT、GPT主流大模型
gpt·学习·bert
1213415 天前
LLM:重构数字世界的“智能操作系统”
gpt·aigc·ai编程·llama·gpu算力
叠叠乐21 天前
ROS2编译的理解,与GPT对话
gpt
蚂蚁数据AntData22 天前
DB-GPT V0.7.2 版本更新:图表组件可视化增强、支持混合搜索 、支持DeepSeek-R1-0528模型等
大数据·数据库·gpt·架构·数据库架构
PacosonSWJTU1 个月前
加载GPT-2模型参数报错:TensorFlow不存在
人工智能·gpt·tensorflow