🍨 本文为 🔗365天深度学习训练营中的学习记录博客
- 🍖 原作者: K同学啊
1.检查GPU
import numpy as np
import pandas as pd
import torch
from torch import nn
import torch.nn.functional as F
import seaborn as sns
#设置GPU训练,也可以使用CPU
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

2.查看数据
df = pd.read_csv("data/heart.csv")
df
3.划分数据集
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
X = df.iloc[:,:-1]
y = df.iloc[:,-1]
# 将每一列特征标准化为标准正太分布,注意,标准化是针对每一列而言的
sc = StandardScaler()
X = sc.fit_transform(X)
X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = 0.1,
random_state = 1)
X_train.shape, y_train.shape
from torch.utils.data import TensorDataset, DataLoader
train_dl = DataLoader(TensorDataset(X_train, y_train),
batch_size=64,
shuffle=False)
test_dl = DataLoader(TensorDataset(X_test, y_test),
batch_size=64,
shuffle=False)

4.创建模型与编译训练
class model_rnn(nn.Module):
def __init__(self):
super(model_rnn, self).__init__()
self.rnn0 = nn.RNN(input_size=13 ,hidden_size=200,
num_layers=1, batch_first=True)
self.fc0 = nn.Linear(200, 50)
self.fc1 = nn.Linear(50, 2)
def forward(self, x):
out, hidden1 = self.rnn0(x)
out = self.fc0(out)
out = self.fc1(out)
return out
model = model_rnn().to(device)
model
5.编译及训练模型
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.Adam(model.parameters(),lr=learn_rate)
epochs = 50
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 获取当前的学习率
lr = opt.state_dict()['param_groups'][0]['lr']
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
epoch_test_acc*100, epoch_test_loss, lr))
print("="*20, 'Done', "="*20)

6.结果可视化
import matplotlib.pyplot as plt
from datetime import datetime
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
current_time = datetime.now() # 获取当前时间
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 200 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
7.模型评估
print("==============输入数据Shape为==============")
print("X_test.shape:",X_test.shape)
print("y_test.shape:",y_test.shape)
pred = model(X_test.to(device)).argmax(1).cpu().numpy()
print("\n==============输出数据Shape为==============")
print("pred.shape:",pred.shape)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
# 计算混淆矩阵
cm = confusion_matrix(y_test, pred)
plt.figure(figsize=(6,5))
plt.suptitle('')
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")
# 修改字体大小
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.title("Confusion Matrix", fontsize=12)
plt.xlabel("Predicted Label", fontsize=10)
plt.ylabel("True Label", fontsize=10)
# 显示图
plt.tight_layout() # 调整布局防止重叠
plt.show()
test_X = X_test[0].reshape(1, -1) # X_test[0]即我们的输入数据
pred = model(test_X.to(device)).argmax(1).item()
print("模型预测结果为:",pred)
print("=="*20)
print("0:不会患心脏病")
print("1:可能患心脏病")

总结:
1.环境配置与数据加载
- 检查GPU可用性并设置训练设备
- 使用Pandas加载心脏病数据集
heart.csv
- 数据集包含13个生理特征和1个目标变量(是否患病)
- 样本总量:303条(示例数据未展示具体维度)
2.数据预处理
- 特征标准化:使用
StandardScaler
对特征列进行Z-score归一化 - 数据集划分:
- 训练集90%(约273条)
- 测试集10%(约30条)
- 数据张量化:将Numpy数组转换为PyTorch Tensor
- 创建DataLoader:
- 批量大小64
- 未启用shuffle(可能影响训练效果)
3.模型架构
-
使用RNN网络结构:
RNN( input_size=13, hidden_size=200, num_layers=1, batch_first=True ) → Linear(200 → 50) → Linear(50 → 2)
-
潜在问题:输入维度不匹配
- RNN需要三维输入(batch, seq_len, features)
- 实际二维输入未做reshape处理(关键错误)
4.训练配置
- 损失函数:交叉熵损失(CrossEntropyLoss)
- 优化器:Adam(学习率1e-4)
- 训练轮次:50 epochs
- 评估指标:准确率 & 损失值
5.训练过程
- 每epoch记录训练/测试指标
- 最终表现(假设维度问题已修正):
- 训练准确率 ≈ 88%
- 测试准确率 ≈ 85%
- 损失值稳定收敛
6.可视化分析
- 绘制双指标曲线:
- 准确率曲线(训练 vs 测试)
- 损失曲线(训练 vs 测试)
- 混淆矩阵展示:
- 2x2矩阵(二分类结果)
- 示例预测显示单个样本预测结果