基于李永乐线性代数基础的行列式的起源于理解

起源于解方程组的过程

对于解一个二元方程组,很自然的会通过加减消元,变成下面这样

对于三元方程组,也是一样:

这一大长串,是A*x1=b1这个形式时,A的值

人们为了方便记忆x未知数前 这一大坨相乘后相加减的数(用|A|表示) ,于是人们引出了行列式的概念,而样子长下面这样:

而推广到4元、5元,就不一样了,于是乎研究出了n阶行列式的展开式:

记忆这个公式前,还引入了逆序数的概念

行列式不是最终方程的解,是最终解前面的系数

行列式,是一个值,是解方程组倒数第二步(中学学的系数化为1前的一步)时,未知数前面的系数,它必定是一个具体的数,而它不是这个方程的一个解!(要解出来还需要系数化为1呢)

上面说得很清楚,是系数,而要如何得出这最终的这个解呢?

如何得到最终的解?

克拉默大佬引出了克拉默法则,其实我们自己也很容易根据二阶行列式推导出来:

对于第一张图,我们容易知道:

所以,克拉默法则的伟大意义在于:

它给出了n*n的线性方程组解个数的判定(是唯一,还是无穷个)

以及具体解的求法(若是唯一[即在系数行列式!=0时],则解是什么)

AI关于《行列式》对于解线性方程组的总结

而知道了这些,现在还有个问题就是,行列式的具体值如何求呢?要是直接通过定义计算,2、3阶还好,更高阶的计算将会相当复杂,于是还引出了行列式计算的方法

行列式的计算(行列式的展开公式)

除了基本的展开公式,伟大的数学家们还发现了一些特殊的行列式快速的计算方法,极大的方便了计算:

相关推荐
郝学胜-神的一滴40 分钟前
矩阵的奇异值分解(SVD)及其在计算机图形学中的应用
程序人生·线性代数·算法·矩阵·图形渲染
Cathy Bryant19 小时前
大模型推理(九):采样温度
笔记·神经网络·机器学习·数学建模·transformer
Cathy Bryant1 天前
大模型损失函数(二):KL散度(Kullback-Leibler divergence)
笔记·神经网络·机器学习·数学建模·transformer
豆沙沙包?2 天前
2025年--Lc201- 378. 有序矩阵中第 K 小的元素(排序)--Java版
java·线性代数·矩阵
CLubiy2 天前
【研究生随笔】Pytorch中的线性代数
pytorch·python·深度学习·线性代数·机器学习
CappuccinoRose2 天前
MATLAB学习文档(二十四)
学习·数学建模·matlab·数据可视化
_码力全开_2 天前
P1005 [NOIP 2007 提高组] 矩阵取数游戏
java·c语言·c++·python·算法·矩阵·go
张晓~183399481212 天前
碰一碰发视频 系统源码 /PHP 语言开发方案
开发语言·线性代数·矩阵·aigc·php·音视频·文心一言
小老鼠不吃猫2 天前
MathType延时使用
数学建模
dxnb223 天前
Datawhale25年10月组队学习:math for AI+Task2线性代数
人工智能·学习·线性代数