起源于解方程组的过程
对于解一个二元方程组,很自然的会通过加减消元,变成下面这样

对于三元方程组,也是一样:

这一大长串,是A*x1=b1这个形式时,A的值
人们为了方便记忆x未知数前 这一大坨相乘后相加减的数(用|A|表示) ,于是人们引出了行列式的概念,而样子长下面这样:

而推广到4元、5元,就不一样了,于是乎研究出了n阶行列式的展开式:

记忆这个公式前,还引入了逆序数的概念
行列式不是最终方程的解,是最终解前面的系数
行列式,是一个值,是解方程组倒数第二步(中学学的系数化为1前的一步)时,未知数前面的系数,它必定是一个具体的数,而它不是这个方程的一个解!(要解出来还需要系数化为1呢)
上面说得很清楚,是系数,而要如何得出这最终的这个解呢?
如何得到最终的解?
克拉默大佬引出了克拉默法则,其实我们自己也很容易根据二阶行列式推导出来:
对于第一张图,我们容易知道:

所以,克拉默法则的伟大意义在于:
它给出了n*n的线性方程组解个数的判定(是唯一,还是无穷个)
以及具体解的求法(若是唯一[即在系数行列式!=0时],则解是什么)

AI关于《行列式》对于解线性方程组的总结
而知道了这些,现在还有个问题就是,行列式的具体值如何求呢?要是直接通过定义计算,2、3阶还好,更高阶的计算将会相当复杂,于是还引出了行列式计算的方法
行列式的计算(行列式的展开公式)

除了基本的展开公式,伟大的数学家们还发现了一些特殊的行列式快速的计算方法,极大的方便了计算:
