基于李永乐线性代数基础的行列式的起源于理解

起源于解方程组的过程

对于解一个二元方程组,很自然的会通过加减消元,变成下面这样

对于三元方程组,也是一样:

这一大长串,是A*x1=b1这个形式时,A的值

人们为了方便记忆x未知数前 这一大坨相乘后相加减的数(用|A|表示) ,于是人们引出了行列式的概念,而样子长下面这样:

而推广到4元、5元,就不一样了,于是乎研究出了n阶行列式的展开式:

记忆这个公式前,还引入了逆序数的概念

行列式不是最终方程的解,是最终解前面的系数

行列式,是一个值,是解方程组倒数第二步(中学学的系数化为1前的一步)时,未知数前面的系数,它必定是一个具体的数,而它不是这个方程的一个解!(要解出来还需要系数化为1呢)

上面说得很清楚,是系数,而要如何得出这最终的这个解呢?

如何得到最终的解?

克拉默大佬引出了克拉默法则,其实我们自己也很容易根据二阶行列式推导出来:

对于第一张图,我们容易知道:

所以,克拉默法则的伟大意义在于:

它给出了n*n的线性方程组解个数的判定(是唯一,还是无穷个)

以及具体解的求法(若是唯一[即在系数行列式!=0时],则解是什么)

AI关于《行列式》对于解线性方程组的总结

而知道了这些,现在还有个问题就是,行列式的具体值如何求呢?要是直接通过定义计算,2、3阶还好,更高阶的计算将会相当复杂,于是还引出了行列式计算的方法

行列式的计算(行列式的展开公式)

除了基本的展开公式,伟大的数学家们还发现了一些特殊的行列式快速的计算方法,极大的方便了计算:

相关推荐
电力程序小学童10 小时前
【复现】一种基于价格弹性矩阵的居民峰谷分时电价激励策略【需求响应】
matlab·矩阵·需求响应·负荷·峰谷电价
lovod12 小时前
【视觉SLAM十四讲】视觉里程计 1
人工智能·线性代数·计算机视觉·矩阵·机器人
却道天凉_好个秋17 小时前
深度学习(十三):向量化与矩阵化
人工智能·深度学习·矩阵·向量化
统计学小王子20 小时前
数模之路获奖总结——数据分析交流(R语言)
数学建模·数据挖掘·数据分析·r语言
MMjeaty1 天前
特殊矩阵的压缩存储
算法·矩阵
MoRanzhi12032 天前
基于 SciPy 的矩阵运算与线性代数应用详解
人工智能·python·线性代数·算法·数学建模·矩阵·scipy
优秘智能UMI2 天前
UMI企业智脑智能营销:多平台视频矩阵引领营销新潮流
大数据·运维·人工智能·ai·矩阵·aigc
智者知已应修善业2 天前
【C++无数组矩阵对角线平均值保留2位小数】2022-11-18
c语言·c++·经验分享·笔记·算法·矩阵
MoRanzhi12033 天前
12. NumPy 数据分析与图像处理入门
大数据·图像处理·人工智能·python·矩阵·数据分析·numpy
人大博士的交易之路3 天前
今日行情明日机会——20250926
数学建模·数据分析·缠论·缠中说禅·涨停回马枪