Opencv使用cuda实现图像处理

main.py

python 复制代码
import os
import cv2
print(f'OpenCV: {cv2.__version__} for python installed and working')
image = cv2.imread('bus.jpg')
if image is None:
    print("无法加载图像1")
print(cv2.cuda.getCudaEnabledDeviceCount())
cv2.cuda.setDevice(0)
cv2.cuda.printCudaDeviceInfo(0)
image_gpu = cv2.cuda_GpuMat()
image_gpu.upload(image)
screenshot = cv2.cuda.cvtColor(image_gpu, cv2.COLOR_RGB2BGR)
screenshot = cv2.cuda.resize(image_gpu, (400, 400))
result_cpu = screenshot.download()
print("图像宽度: ", image.shape)
print("数据类型:", image.dtype)
print("在CPU下,原始图像格式:", type(image))
print("在GPU下,处理后的图像格式:", type(screenshot))
print("在CPU下,处理后的图像格式:", type(result_cpu))
print("图像宽度: ", result_cpu.shape)
print("数据类型:", result_cpu.dtype)
if result_cpu is None:
    print("无法加载图像2")
else:
    cv2.imshow("Window", result_cpu)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

main.cpp

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/cudaimgproc.hpp>
int main(int argc, char* argv[])
{
	cv::Mat h_img1 = cv::imread("bus.jpg");
	cv::cuda::GpuMat d_result1, d_result2, d_result3, d_result4, d_img1;
	d_img1.upload(h_img1);
	cv::cuda::cvtColor(d_img1, d_result1, cv::COLOR_BGR2GRAY);
	cv::cuda::cvtColor(d_img1, d_result2, cv::COLOR_BGR2RGB);
	cv::cuda::cvtColor(d_img1, d_result3, cv::COLOR_BGR2HSV);
	cv::cuda::cvtColor(d_img1, d_result4, cv::COLOR_BGR2YCrCb);
	cv::Mat h_result1, h_result2, h_result3, h_result4;
	d_result1.download(h_result1);
	d_result2.download(h_result2);
	d_result3.download(h_result3);
	d_result4.download(h_result4);
	cv::imshow("Gray处理结果:", h_result1);
	cv::imshow("RGB处理结果:", h_result2);
	cv::imshow("HSV处理结果:", h_result3);
	cv::imshow("YCrCb处理结果:", h_result4);
	cv::waitKey(0);
	return 0;
}

CMakeLists.txt

bash 复制代码
cmake_minimum_required(VERSION 3.10)
project(OpenCVCuda LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set("OpenCV_DIR" "E:\\Opencv gpu\\newbuild\\install")
set(OpenCV_INCLUDE_DIRS ${OpenCV_DIR}\\include)
set(OpenCV_LIB_DEBUG ${OpenCV_DIR}\\x64\\vc17\\lib\\opencv_world470d.lib) 
set(OpenCV_LIB_RELEASE ${OpenCV_DIR}\\x64\\vc17\\lib\\opencv_world470.lib)   
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CUDA_ARCHITECTURES 86)		
find_package(CUDA REQUIRED)			
enable_language(CUDA)  
include_directories(${OpenCV_INCLUDE_DIRS}) 
link_directories(${OpenCV_LIB_DIRS})  
find_package(OpenCV QUIET)	
link_libraries(${OpenCV_LIBS})
add_executable(OpenCVCuda main.cpp)
target_link_libraries(${PROJECT_NAME} 
    $<$<CONFIG:Debug>:${OpenCV_LIB_DEBUG}>
    $<$<CONFIG:Release>:${OpenCV_LIB_RELEASE}>
)
target_compile_features(OpenCVCuda PRIVATE cxx_std_14)
相关推荐
WSSWWWSSW1 分钟前
华为昇腾NPU卡 文生视频[T2V]大模型WAN2.1模型推理使用
人工智能·大模型·音视频·显卡·文生视频·文生音频·文生音乐
数据要素X8 分钟前
【数据架构10】数字政府架构篇
大数据·运维·数据库·人工智能·架构
Ronin-Lotus21 分钟前
深度学习篇---PaddleDetection模型选择
人工智能·深度学习
qq_40999093?28 分钟前
安全和AI方向的学习路线
人工智能·安全
Blossom.11830 分钟前
基于深度学习的医学图像分析:使用CycleGAN实现图像到图像的转换
人工智能·深度学习·目标检测·机器学习·分类·数据挖掘·语音识别
luofeiju1 小时前
OpenCV图像缩放:resize
opencv
沐沐沐沐沐沐1 小时前
图像认知与OpenCV | Day5:图像预处理(4)
人工智能·opencv·计算机视觉
一水鉴天1 小时前
关于“PromptPilot” 之3 -Prompt构造器核心专项能力:任务调度
人工智能
陈敬雷-充电了么-CEO兼CTO1 小时前
强化学习三巨头PK:PPO、GRPO、DPO谁是大模型训练的「王炸」?
人工智能·python·机器学习·chatgpt·aigc·ppo·grpo
Wendy14411 小时前
【图像噪点消除】——图像预处理(OpenCV)
人工智能·opencv·计算机视觉