Opencv使用cuda实现图像处理

main.py

python 复制代码
import os
import cv2
print(f'OpenCV: {cv2.__version__} for python installed and working')
image = cv2.imread('bus.jpg')
if image is None:
    print("无法加载图像1")
print(cv2.cuda.getCudaEnabledDeviceCount())
cv2.cuda.setDevice(0)
cv2.cuda.printCudaDeviceInfo(0)
image_gpu = cv2.cuda_GpuMat()
image_gpu.upload(image)
screenshot = cv2.cuda.cvtColor(image_gpu, cv2.COLOR_RGB2BGR)
screenshot = cv2.cuda.resize(image_gpu, (400, 400))
result_cpu = screenshot.download()
print("图像宽度: ", image.shape)
print("数据类型:", image.dtype)
print("在CPU下,原始图像格式:", type(image))
print("在GPU下,处理后的图像格式:", type(screenshot))
print("在CPU下,处理后的图像格式:", type(result_cpu))
print("图像宽度: ", result_cpu.shape)
print("数据类型:", result_cpu.dtype)
if result_cpu is None:
    print("无法加载图像2")
else:
    cv2.imshow("Window", result_cpu)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

main.cpp

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/cudaimgproc.hpp>
int main(int argc, char* argv[])
{
	cv::Mat h_img1 = cv::imread("bus.jpg");
	cv::cuda::GpuMat d_result1, d_result2, d_result3, d_result4, d_img1;
	d_img1.upload(h_img1);
	cv::cuda::cvtColor(d_img1, d_result1, cv::COLOR_BGR2GRAY);
	cv::cuda::cvtColor(d_img1, d_result2, cv::COLOR_BGR2RGB);
	cv::cuda::cvtColor(d_img1, d_result3, cv::COLOR_BGR2HSV);
	cv::cuda::cvtColor(d_img1, d_result4, cv::COLOR_BGR2YCrCb);
	cv::Mat h_result1, h_result2, h_result3, h_result4;
	d_result1.download(h_result1);
	d_result2.download(h_result2);
	d_result3.download(h_result3);
	d_result4.download(h_result4);
	cv::imshow("Gray处理结果:", h_result1);
	cv::imshow("RGB处理结果:", h_result2);
	cv::imshow("HSV处理结果:", h_result3);
	cv::imshow("YCrCb处理结果:", h_result4);
	cv::waitKey(0);
	return 0;
}

CMakeLists.txt

bash 复制代码
cmake_minimum_required(VERSION 3.10)
project(OpenCVCuda LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set("OpenCV_DIR" "E:\\Opencv gpu\\newbuild\\install")
set(OpenCV_INCLUDE_DIRS ${OpenCV_DIR}\\include)
set(OpenCV_LIB_DEBUG ${OpenCV_DIR}\\x64\\vc17\\lib\\opencv_world470d.lib) 
set(OpenCV_LIB_RELEASE ${OpenCV_DIR}\\x64\\vc17\\lib\\opencv_world470.lib)   
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CUDA_ARCHITECTURES 86)		
find_package(CUDA REQUIRED)			
enable_language(CUDA)  
include_directories(${OpenCV_INCLUDE_DIRS}) 
link_directories(${OpenCV_LIB_DIRS})  
find_package(OpenCV QUIET)	
link_libraries(${OpenCV_LIBS})
add_executable(OpenCVCuda main.cpp)
target_link_libraries(${PROJECT_NAME} 
    $<$<CONFIG:Debug>:${OpenCV_LIB_DEBUG}>
    $<$<CONFIG:Release>:${OpenCV_LIB_RELEASE}>
)
target_compile_features(OpenCVCuda PRIVATE cxx_std_14)
相关推荐
发哥来了1 分钟前
主流AI视频生成商用方案选型评测:五大核心维度对比分析
大数据·人工智能
物联网APP开发从业者2 分钟前
2026年AI智能产品开发行业十大创新解决方案
人工智能
badfl15 分钟前
VSCode Claude Code插件配置教程:使用、配置中转API、常见问题
人工智能·vscode·ai
Faker66363aaa40 分钟前
指纹过滤器缺陷检测与分类 —— 基于MS-RCNN_X101-64x4d_FPN_1x_COCO模型的实现与分析_1
人工智能·目标跟踪·分类
金融小师妹1 小时前
基于LSTM-GARCH-EVT混合模型的贵金属极端波动解析:黄金白银双双反弹的逻辑验证
大数据·人工智能·深度学习·机器学习
代码匠心1 小时前
Trae IDE 隐藏玩法:接入即梦 AI,生成高质量大片!
人工智能·ai·trae·skills
陈天伟教授1 小时前
人工智能应用- 语言理解:01. 写作与对话
人工智能·深度学习·语音识别
铁蛋AI编程实战1 小时前
OpenClaw+Kimi K2.5开源AI助手零门槛部署教程:本地私有化+远程控制+办公自动化全实操
人工智能·开源
liliangcsdn1 小时前
文本视频音频分块工具 - Semantic Chunkers
人工智能·音视频
OPEN-Source1 小时前
大模型实战:大模型推理性能优化与成本控制实战
人工智能·性能优化·rag