Opencv使用cuda实现图像处理

main.py

python 复制代码
import os
import cv2
print(f'OpenCV: {cv2.__version__} for python installed and working')
image = cv2.imread('bus.jpg')
if image is None:
    print("无法加载图像1")
print(cv2.cuda.getCudaEnabledDeviceCount())
cv2.cuda.setDevice(0)
cv2.cuda.printCudaDeviceInfo(0)
image_gpu = cv2.cuda_GpuMat()
image_gpu.upload(image)
screenshot = cv2.cuda.cvtColor(image_gpu, cv2.COLOR_RGB2BGR)
screenshot = cv2.cuda.resize(image_gpu, (400, 400))
result_cpu = screenshot.download()
print("图像宽度: ", image.shape)
print("数据类型:", image.dtype)
print("在CPU下,原始图像格式:", type(image))
print("在GPU下,处理后的图像格式:", type(screenshot))
print("在CPU下,处理后的图像格式:", type(result_cpu))
print("图像宽度: ", result_cpu.shape)
print("数据类型:", result_cpu.dtype)
if result_cpu is None:
    print("无法加载图像2")
else:
    cv2.imshow("Window", result_cpu)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

main.cpp

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/cudaimgproc.hpp>
int main(int argc, char* argv[])
{
	cv::Mat h_img1 = cv::imread("bus.jpg");
	cv::cuda::GpuMat d_result1, d_result2, d_result3, d_result4, d_img1;
	d_img1.upload(h_img1);
	cv::cuda::cvtColor(d_img1, d_result1, cv::COLOR_BGR2GRAY);
	cv::cuda::cvtColor(d_img1, d_result2, cv::COLOR_BGR2RGB);
	cv::cuda::cvtColor(d_img1, d_result3, cv::COLOR_BGR2HSV);
	cv::cuda::cvtColor(d_img1, d_result4, cv::COLOR_BGR2YCrCb);
	cv::Mat h_result1, h_result2, h_result3, h_result4;
	d_result1.download(h_result1);
	d_result2.download(h_result2);
	d_result3.download(h_result3);
	d_result4.download(h_result4);
	cv::imshow("Gray处理结果:", h_result1);
	cv::imshow("RGB处理结果:", h_result2);
	cv::imshow("HSV处理结果:", h_result3);
	cv::imshow("YCrCb处理结果:", h_result4);
	cv::waitKey(0);
	return 0;
}

CMakeLists.txt

bash 复制代码
cmake_minimum_required(VERSION 3.10)
project(OpenCVCuda LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set("OpenCV_DIR" "E:\\Opencv gpu\\newbuild\\install")
set(OpenCV_INCLUDE_DIRS ${OpenCV_DIR}\\include)
set(OpenCV_LIB_DEBUG ${OpenCV_DIR}\\x64\\vc17\\lib\\opencv_world470d.lib) 
set(OpenCV_LIB_RELEASE ${OpenCV_DIR}\\x64\\vc17\\lib\\opencv_world470.lib)   
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CUDA_ARCHITECTURES 86)		
find_package(CUDA REQUIRED)			
enable_language(CUDA)  
include_directories(${OpenCV_INCLUDE_DIRS}) 
link_directories(${OpenCV_LIB_DIRS})  
find_package(OpenCV QUIET)	
link_libraries(${OpenCV_LIBS})
add_executable(OpenCVCuda main.cpp)
target_link_libraries(${PROJECT_NAME} 
    $<$<CONFIG:Debug>:${OpenCV_LIB_DEBUG}>
    $<$<CONFIG:Release>:${OpenCV_LIB_RELEASE}>
)
target_compile_features(OpenCVCuda PRIVATE cxx_std_14)
相关推荐
思通数据37 分钟前
AI全域智能监控系统重构商业清洁管理范式——从被动响应到主动预防的监控效能革命
大数据·人工智能·目标检测·机器学习·计算机视觉·数据挖掘·ocr
flex888840 分钟前
FramePack - 开源 AI 视频生成工具
人工智能·开源·音视频
jndingxin1 小时前
OpenCV CUDA模块中矩阵操作------范数(Norm)相关函数
人工智能·opencv
何双新1 小时前
第6讲、全面拆解Encoder、Decoder内部模块
人工智能
jzwei0231 小时前
Transformer Decoder-Only 算力FLOPs估计
人工智能·深度学习·transformer
lilye662 小时前
精益数据分析(55/126):双边市场模式的挑战、策略与创业阶段关联
大数据·人工智能·数据分析
MUTA️2 小时前
ultalytics代码中模型接收多层输入的处理
深度学习·算法·yolo·机器学习·计算机视觉
weixin_408266342 小时前
深度学习-分布式训练机制
人工智能·分布式·深度学习
struggle20252 小时前
AgenticSeek开源的完全本地的 Manus AI。无需 API,享受一个自主代理,它可以思考、浏览 Web 和编码,只需支付电费。
人工智能·开源·自动化
Panesle2 小时前
阿里开源通义万相Wan2.1-VACE-14B:用于视频创建和编辑的一体化模型
人工智能·开源·大模型·文生视频·多模态·生成模型