Spark Core编程核心要点总结

在大数据处理领域,Spark Core凭借其强大的功能和高效的性能备受开发者青睐。今天就来给大家总结一下Spark Core编程中的关键知识点。

先说说RDD行动算子,它能触发真正的数据计算。像 reduce 算子,能聚合RDD里的所有元素,先处理分区内数据,再聚合分区间数据; collect 算子可在驱动程序中以数组形式返回数据集的全部元素; foreach 用于分布式遍历RDD的每个元素并执行指定函数; count 则返回RDD中元素的个数 。此外, take 和 takeOrdered 分别能获取RDD的前n个元素和排序后的前n个元素, aggregate 和 fold 可实现分区内和分区间的数据聚合操作, countByKey 能统计每种key的数量,还有 save 相关算子用于将数据保存为不同格式的文件。

累加器和广播变量也是Spark编程的重要组件。累加器用于把Executor端的变量信息聚合到Driver端,在进行数据统计和累加操作时非常实用。比如在实现wordcount时,自定义累加器能更灵活地满足需求。广播变量则用于高效分发较大的只读对象,避免在每个任务中重复传输,提高了数据处理效率。

最后是Key - Value类型的相关操作。 partitionBy 能按指定分区器重新分区; groupByKey 和 reduceByKey 都能对数据按key进行操作,不过 reduceByKey 在shuffle前能对相同key的数据预聚合,性能更优。 aggregateByKey 、 foldByKey 和 combineByKey 功能各有特点,适用于不同的聚合场景。 sortByKey 可对RDD按key排序, join 、 leftOuterJoin 和 cogroup 等算子则用于不同类型RDD间的连接和组合操作。

相关推荐
小白狮ww1 小时前
要给 OCR 装个脑子吗?DeepSeek-OCR 2 让文档不再只是扫描
人工智能·深度学习·机器学习·ocr·cpu·gpu·deepseek
dazzle2 小时前
机器学习算法原理与实践-入门(三):使用数学方法实现KNN
人工智能·算法·机器学习
玄同7653 小时前
Python 后端三剑客:FastAPI/Flask/Django 对比与 LLM 开发选型指南
人工智能·python·机器学习·自然语言处理·django·flask·fastapi
B站_计算机毕业设计之家3 小时前
豆瓣电影推荐系统 | Python Django Echarts构建个性化影视推荐平台 大数据 毕业设计源码 (建议收藏)✅
大数据·python·机器学习·django·毕业设计·echarts·推荐算法
啊阿狸不会拉杆3 小时前
《机器学习导论》第 5 章-多元方法
人工智能·python·算法·机器学习·numpy·matplotlib·多元方法
铁蛋AI编程实战4 小时前
MemoryLake 实战:构建超长对话 AI 助手的完整代码教程
人工智能·python·microsoft·机器学习
鸿乃江边鸟4 小时前
Spark Datafusion Comet 向量化Rust Native--CometShuffleExchangeExec怎么控制读写
大数据·rust·spark·native
张较瘦_4 小时前
[论文阅读] AI | 用机器学习给深度学习库“体检”:大幅提升测试效率的新思路
论文阅读·人工智能·机器学习
算法狗24 小时前
大模型面试题:大模型的训练和推理中显存和计算量的情况
人工智能·深度学习·机器学习·语言模型