Spark Core编程核心要点总结

在大数据处理领域,Spark Core凭借其强大的功能和高效的性能备受开发者青睐。今天就来给大家总结一下Spark Core编程中的关键知识点。

先说说RDD行动算子,它能触发真正的数据计算。像 reduce 算子,能聚合RDD里的所有元素,先处理分区内数据,再聚合分区间数据; collect 算子可在驱动程序中以数组形式返回数据集的全部元素; foreach 用于分布式遍历RDD的每个元素并执行指定函数; count 则返回RDD中元素的个数 。此外, take 和 takeOrdered 分别能获取RDD的前n个元素和排序后的前n个元素, aggregate 和 fold 可实现分区内和分区间的数据聚合操作, countByKey 能统计每种key的数量,还有 save 相关算子用于将数据保存为不同格式的文件。

累加器和广播变量也是Spark编程的重要组件。累加器用于把Executor端的变量信息聚合到Driver端,在进行数据统计和累加操作时非常实用。比如在实现wordcount时,自定义累加器能更灵活地满足需求。广播变量则用于高效分发较大的只读对象,避免在每个任务中重复传输,提高了数据处理效率。

最后是Key - Value类型的相关操作。 partitionBy 能按指定分区器重新分区; groupByKey 和 reduceByKey 都能对数据按key进行操作,不过 reduceByKey 在shuffle前能对相同key的数据预聚合,性能更优。 aggregateByKey 、 foldByKey 和 combineByKey 功能各有特点,适用于不同的聚合场景。 sortByKey 可对RDD按key排序, join 、 leftOuterJoin 和 cogroup 等算子则用于不同类型RDD间的连接和组合操作。

相关推荐
龙山云仓10 小时前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene
名为沙丁鱼的猫72913 小时前
【MCP 协议层(Protocol layer)详解】:深入分析MCP Python SDK中协议层的实现机制
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
香芋Yu13 小时前
【机器学习教程】第04章 指数族分布
人工智能·笔记·机器学习
依依yyy13 小时前
沪深300指数收益率波动性分析与预测——基于ARMA-GARCH模型
人工智能·算法·机器学习
纠结哥_Shrek14 小时前
外贸选品工程师的工作流程和方法论
python·机器学习
Coding茶水间14 小时前
基于深度学习的输电电力设备检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
Christo315 小时前
TFS-2026《Fuzzy Multi-Subspace Clustering 》
人工智能·算法·机器学习·数据挖掘
GIS瞧葩菜17 小时前
Cesium 轴拖拽 + 旋转圈拖拽 核心数学知识
人工智能·算法·机器学习
张小凡vip18 小时前
数据挖掘(十)---python操作Spark常用命令
python·数据挖掘·spark
weixin_3954489118 小时前
排查流程啊啊啊
人工智能·深度学习·机器学习