Spark Core编程核心要点总结

在大数据处理领域,Spark Core凭借其强大的功能和高效的性能备受开发者青睐。今天就来给大家总结一下Spark Core编程中的关键知识点。

先说说RDD行动算子,它能触发真正的数据计算。像 reduce 算子,能聚合RDD里的所有元素,先处理分区内数据,再聚合分区间数据; collect 算子可在驱动程序中以数组形式返回数据集的全部元素; foreach 用于分布式遍历RDD的每个元素并执行指定函数; count 则返回RDD中元素的个数 。此外, take 和 takeOrdered 分别能获取RDD的前n个元素和排序后的前n个元素, aggregate 和 fold 可实现分区内和分区间的数据聚合操作, countByKey 能统计每种key的数量,还有 save 相关算子用于将数据保存为不同格式的文件。

累加器和广播变量也是Spark编程的重要组件。累加器用于把Executor端的变量信息聚合到Driver端,在进行数据统计和累加操作时非常实用。比如在实现wordcount时,自定义累加器能更灵活地满足需求。广播变量则用于高效分发较大的只读对象,避免在每个任务中重复传输,提高了数据处理效率。

最后是Key - Value类型的相关操作。 partitionBy 能按指定分区器重新分区; groupByKey 和 reduceByKey 都能对数据按key进行操作,不过 reduceByKey 在shuffle前能对相同key的数据预聚合,性能更优。 aggregateByKey 、 foldByKey 和 combineByKey 功能各有特点,适用于不同的聚合场景。 sortByKey 可对RDD按key排序, join 、 leftOuterJoin 和 cogroup 等算子则用于不同类型RDD间的连接和组合操作。

相关推荐
legendary_bruce3 小时前
【22-决策树】
算法·决策树·机器学习
paid槮3 小时前
机器学习总结
人工智能·深度学习·机器学习
亚里随笔4 小时前
稳定且高效:GSPO如何革新大型语言模型的强化学习训练?
人工智能·机器学习·语言模型·自然语言处理·llm·rlhf
荼蘼4 小时前
机器学习之PCA降维
人工智能·机器学习
图灵学术计算机论文辅导7 小时前
傅里叶变换+attention机制,深耕深度学习领域
人工智能·python·深度学习·计算机网络·考研·机器学习·计算机视觉
楚韵天工11 小时前
基于多分类的工业异常声检测及应用
人工智能·深度学习·神经网络·目标检测·机器学习·分类·数据挖掘
计算机毕设残哥12 小时前
完整技术栈分享:基于Hadoop+Spark的在线教育投融资大数据可视化分析系统
大数据·hadoop·python·信息可视化·spark·计算机毕设·计算机毕业设计
老艾的AI世界12 小时前
AI去、穿、换装软件下载,无内容限制,偷偷收藏
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai·换装·虚拟试衣·ai换装·一键换装
OpenC++13 小时前
【机器学习】核心分类及详细介绍
人工智能·机器学习·分类
2301_8219199214 小时前
机器学习概述(一)
人工智能·机器学习