Spark Core编程核心要点总结

在大数据处理领域,Spark Core凭借其强大的功能和高效的性能备受开发者青睐。今天就来给大家总结一下Spark Core编程中的关键知识点。

先说说RDD行动算子,它能触发真正的数据计算。像 reduce 算子,能聚合RDD里的所有元素,先处理分区内数据,再聚合分区间数据; collect 算子可在驱动程序中以数组形式返回数据集的全部元素; foreach 用于分布式遍历RDD的每个元素并执行指定函数; count 则返回RDD中元素的个数 。此外, take 和 takeOrdered 分别能获取RDD的前n个元素和排序后的前n个元素, aggregate 和 fold 可实现分区内和分区间的数据聚合操作, countByKey 能统计每种key的数量,还有 save 相关算子用于将数据保存为不同格式的文件。

累加器和广播变量也是Spark编程的重要组件。累加器用于把Executor端的变量信息聚合到Driver端,在进行数据统计和累加操作时非常实用。比如在实现wordcount时,自定义累加器能更灵活地满足需求。广播变量则用于高效分发较大的只读对象,避免在每个任务中重复传输,提高了数据处理效率。

最后是Key - Value类型的相关操作。 partitionBy 能按指定分区器重新分区; groupByKey 和 reduceByKey 都能对数据按key进行操作,不过 reduceByKey 在shuffle前能对相同key的数据预聚合,性能更优。 aggregateByKey 、 foldByKey 和 combineByKey 功能各有特点,适用于不同的聚合场景。 sortByKey 可对RDD按key排序, join 、 leftOuterJoin 和 cogroup 等算子则用于不同类型RDD间的连接和组合操作。

相关推荐
新知图书37 分钟前
RDD的特点、算子与创建方法
数据分析·spark·1024程序员节
一条数据库1 小时前
猫狗识别数据集:34,441张高质量标注图像,深度学习二分类任务训练数据集,计算机视觉算法研发,CNN模型训练,图像识别分类,机器学习实践项目完整数据资
深度学习·算法·机器学习
ZEERO~1 小时前
夏普比率和最大回撤公式推导及代码实现
大数据·人工智能·机器学习·金融
高工智能汽车1 小时前
“融资热潮”来临!商用车自动驾驶拐点已至?
人工智能·机器学习·自动驾驶
syker2 小时前
NEWBASIC 2.06.7 API 帮助与用户使用手册
开发语言·人工智能·机器学习·自动化
CAE3205 小时前
基于机器学习的智能垃圾短信检测超强系统
人工智能·python·机器学习·自然语言处理·垃圾短信拦截
深圳佛手15 小时前
AI 编程工具Claude Code 介绍
人工智能·python·机器学习·langchain
koo36416 小时前
李宏毅机器学习笔记43
人工智能·笔记·机器学习
程序猿追17 小时前
轻量级云原生体验:在OpenEuler 25.09上快速部署单节点K3s
人工智能·科技·机器学习·unity·游戏引擎
程序猿追18 小时前
异腾910B NPU实战:vLLM模型深度测评与部署指南
运维·服务器·人工智能·机器学习·架构