Spark Core编程核心要点总结

在大数据处理领域,Spark Core凭借其强大的功能和高效的性能备受开发者青睐。今天就来给大家总结一下Spark Core编程中的关键知识点。

先说说RDD行动算子,它能触发真正的数据计算。像 reduce 算子,能聚合RDD里的所有元素,先处理分区内数据,再聚合分区间数据; collect 算子可在驱动程序中以数组形式返回数据集的全部元素; foreach 用于分布式遍历RDD的每个元素并执行指定函数; count 则返回RDD中元素的个数 。此外, take 和 takeOrdered 分别能获取RDD的前n个元素和排序后的前n个元素, aggregate 和 fold 可实现分区内和分区间的数据聚合操作, countByKey 能统计每种key的数量,还有 save 相关算子用于将数据保存为不同格式的文件。

累加器和广播变量也是Spark编程的重要组件。累加器用于把Executor端的变量信息聚合到Driver端,在进行数据统计和累加操作时非常实用。比如在实现wordcount时,自定义累加器能更灵活地满足需求。广播变量则用于高效分发较大的只读对象,避免在每个任务中重复传输,提高了数据处理效率。

最后是Key - Value类型的相关操作。 partitionBy 能按指定分区器重新分区; groupByKey 和 reduceByKey 都能对数据按key进行操作,不过 reduceByKey 在shuffle前能对相同key的数据预聚合,性能更优。 aggregateByKey 、 foldByKey 和 combineByKey 功能各有特点,适用于不同的聚合场景。 sortByKey 可对RDD按key排序, join 、 leftOuterJoin 和 cogroup 等算子则用于不同类型RDD间的连接和组合操作。

相关推荐
产品经理独孤虾9 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
胖达不服输12 小时前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
吹风看太阳14 小时前
机器学习16-总体架构
人工智能·机器学习
暗影八度15 小时前
Spark流水线数据质量检查组件
大数据·分布式·spark
AI生存日记16 小时前
AI 行业早报:微软发布诊断工具,上海聚焦四大应用场景
人工智能·microsoft·机器学习·open ai大模型
FF-Studio20 小时前
大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
人工智能·python·深度学习·神经网络·机器学习·语言模型·自然语言处理
狗头大军之江苏分军20 小时前
疑似华为盘古AI大模型翻车造假风波【实时记录篇】
人工智能·机器学习·程序员
LucianaiB1 天前
Chatbox➕知识库➕Mcp = 机器学习私人语音助手
机器学习·知识库·mcp·chatbox
SHIPKING3931 天前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
巴伦是只猫1 天前
【机器学习笔记Ⅰ】11 多项式回归
笔记·机器学习·回归