强化学习入门-1-CartPole-v1(DQN)

强化学习项目-1-CartPole-v1(DQN)

环境

本环境是OpenAI Gym提供的一个经典控制环境。

官网链接:https://gymnasium.farama.org/environments/classic_control/cart_pole/

观测空间(状态S)

状态共包含 4 4 4个参数:

  • 车位置(Cart Position)
  • 车速(Cart Velocity)
  • 杆子的角度(Pole Angle)
  • 角速度(Pole Angular Velocity)

动作空间(动作A)

  • 0: 推动车向左移动
  • 1: 推动车向右移动

奖励

每坚持一步,环境将会给出 1 1 1点奖励,最大可以获得 500 500 500奖励,同时只要达到 200 200 200就视为达到通过门槛。

引入环境

下载包
text 复制代码
pip install gymnasium
导入
python 复制代码
import gymnasium as gym
env = gym.make("CartPole-v1", render_mode="human")
# 获取状态维度和动作维度
state_dim  = env.observation_space.shape[0] if len(env.observation_space.shape) == 1 else env.observation_space.n
action_dim = env.action_space.n

Q网络

定义

这里 Q Q Q网络仅为一个替代 Q Q Q函数的预测神经网络,对于状态 s s s预测所有的 Q ( s , a ) Q(s, a) Q(s,a)

双网络结构

为了确保 Q Q Q值的稳定性,一般会使用两个神经网络:

  • Q Q Q网络:用于估计当前策略的 Q Q Q值的网络
  • 目标网络:用于提高稳定的目标 Q Q Q值的网络

简单来说,就是由 Q Q Q网络输出预测值,由目标网络预测结果作为真实值,并且每次训练仅更新 Q Q Q网络,每经过若干轮训练后再将 Q Q Q网络参数复制到目标网络。

代码实现

这里网络采用两层隐藏层,维度均为 128 128 128,激活函数为Relu

python 复制代码
class Qnet(nn.Module):
    def __init__(self, hidden_dim = 128):
        super(Qnet, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(state_dim, hidden_dim), nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim), nn.ReLU(),
            nn.Linear(hidden_dim, action_dim)
        )

    def forward(self, x):
        return self.net(x)

经验回放池

定义

用于存储和重复利用历史交互数据的数据结构。

它把智能体与环境交互产生的经验元组(通常形如 ( s , a , r , s ′ , d o n e ) (s, a, r, s^{\prime}, done) (s,a,r,s′,done))暂存起来,并在后续训练中以随机小批量的形式反复抽取,用于更新策略或价值函数。

代码实现

经验回放池共包含3个函数:

  • 初始化:创建一个双端队列存储数据,并设置最大容量
  • 添加数据:将经验元组放入双端队列,如果超过容量先进行删除操作
  • 随机采样:随机采样 b a t c h    s i z e batch \; size batchsize组数据,转换后成张量后返回
python 复制代码
class ReplayBuffer(object):
    def __init__(self, max_size = 50000):
        self.max_size = max_size
        self.buffer = deque(maxlen = max_size)

    def add(self, state, action, reward, next_state, done):
        if self.__len__() >= self.max_size:
            self.buffer.popleft()
        self.buffer.append((state, action, reward, next_state, done))

    def sample(self, batch_size, device = 'mps'):
        indices = np.random.choice(len(self.buffer), batch_size, replace=True)
        batch = [self.buffer[i] for i in indices]
        states, actions, rewards, next_states, dones = zip(*batch)
        return (torch.FloatTensor(states).to(device),
                torch.LongTensor(actions).to(device),
                torch.FloatTensor(rewards).to(device),
                torch.FloatTensor(next_states).to(device),
                torch.FloatTensor(dones).to(device))

DQN算法

定义

DQN算法的核心就是使用神经网络替代了Q函数,用于预测 Q ( s , a ) Q(s,a) Q(s,a)

初始化

定义时将所有需要的参数设置好。

定义好两个网络,设置好优化器,折扣因子等等。

python 复制代码
class DQN():
    def __init__(self, lr = 3e-4,gamma = 0.98, epsilon = 0.1, batch_size = 128, update_epochs = 50):
        self.q_net = Qnet()
        self.target_q_net = Qnet()
        self.target_q_net.load_state_dict(self.q_net.state_dict())
        self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr)
        self.gamma = gamma
        self.epsilon = epsilon
        self.batch_size = batch_size
        self.update_epochs = update_epochs
        self.loss = nn.MSELoss()
        self.memory = ReplayBuffer()
        self.learnstep = 0

动作选择

这里使用 ϵ \epsilon ϵ贪心策略进行动作选择, ϵ \epsilon ϵ在训练时动态更新。

python 复制代码
def choose_action(self, state):
       state = torch.from_numpy(state).float()
       state = state.unsqueeze(0)
       if np.random.random() > self.epsilon:
           action_values = self.q_net(state)
           action = torch.argmax(action_values).item()
       else:
           action = np.random.randint(0, action_dim)
       return action

状态保存

将智能体与环境的互动存储下来,用于后续的训练。

python 复制代码
def store_transition(self, state, action, reward, next_state, done):
    self.memory.add(state, action, reward, next_state, done)

训练

当收集到超过 b a t c h    s i z e batch \; size batchsize组信息后,就可以开始训练了,在经验回放池中随机取出 b a t c h    s i z e batch \; size batchsize组信息,并通过 Q Q Q网络得到预测到 Q ( s t , a t ) Q(s_{t},a_{t}) Q(st,at)值。

然后通过目标网络得到下一状态的 Q ( s t + 1 , a t + 1 ) Q(s_{t + 1}, a_{t + 1}) Q(st+1,at+1),并计算出目标 Q Q Q值。

得到当前 Q Q Q值和目标 Q Q Q值后计算损失并更新网络,同时定期更新目标网络。

python 复制代码
def learn(self):
    if len(self.memory) < self.batch_size:
        return
    # 批量计算Q(s,a)
    states, actions, rewards, next_states, dones = self.memory.sample(self.batch_size)
    q_values = self.q_net(states)
    next_q_values = self.target_q_net(next_states)
    q_sa = q_values.gather(1, actions.unsqueeze(1)).squeeze(1)
    target = rewards + self.gamma * next_q_values.max(1)[0].detach() * (1 - dones)
    # 计算损失并反向传播
    loss = self.loss(q_sa, target)
    self.optimizer.zero_grad()
    loss.backward()
    self.optimizer.step()
    # 目标网络更新
    self.learnstep += 1
    if self.learnstep % self.update_epochs == 0:
        self.target_q_net.load_state_dict(self.q_net.state_dict())

环境交互 & 模型训练

设置好参数后就可以初始化环境开始收集信息并训练模型

python 复制代码
from tqdm import tqdm
episodes = 1000
epsilon_dacay = 0.995
epsilon_start = 1
epsilon_end = 0.05
scores = []
model = DQN()
pbar = tqdm(range(episodes), desc="Training")
for episode in pbar:
    state, _ = env.reset()
    score = 0
    done = False
    while not done:
        action = model.choose_action(state)  
        next_state, reward, done, truncated,_ = env.step(action)
        done = done or truncated
        model.store_transition(state, action, reward, next_state, done)
        state = next_state
        model.learn()
        score += reward
        env.render()
    scores.append(score)
    model.epsilon = max(epsilon_end, model.epsilon * epsilon_dacay)
    pbar.set_postfix(ep=episode, score=score, avg100=np.mean(scores[-100:]), ε=model.epsilon)
torch.save(model.q_net.state_dict(), "../model/cartpole.pt")
print(scores)
plt.plot(scores)
plt.show()

完整程序

python 复制代码
import gymnasium as gym, torch, torch.nn as nn, numpy as np, random, matplotlib.pyplot as plt
from collections import deque

env = gym.make("CartPole-v1")
# env = gym.make("CartPole-v1", render_mode="human")
state_dim  = env.observation_space.shape[0] if len(env.observation_space.shape) == 1 else env.observation_space.n
action_dim = env.action_space.n
# print(state_dim, action_dim)
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
class Qnet(nn.Module):
    def __init__(self, hidden_dim = 128):
        super(Qnet, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(state_dim, hidden_dim), nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim), nn.ReLU(),
            nn.Linear(hidden_dim, action_dim)
        )

    def forward(self, x):
        return self.net(x)

class ReplayBuffer(object):
    def __init__(self, max_size = 50000):
        self.max_size = max_size
        self.buffer = deque(maxlen = max_size)

    def add(self, state, action, reward, next_state, done):
        if self.__len__() >= self.max_size:
            self.buffer.popleft()
        self.buffer.append((state, action, reward, next_state, done))

    def sample(self, batch_size, device = 'cpu'):
        indices = np.random.choice(len(self.buffer), batch_size, replace=True)
        batch = [self.buffer[i] for i in indices]
        states, actions, rewards, next_states, dones = zip(*batch)
        return (torch.FloatTensor(states).to(device),
                torch.LongTensor(actions).to(device),
                torch.FloatTensor(rewards).to(device),
                torch.FloatTensor(next_states).to(device),
                torch.FloatTensor(dones).to(device))

    def __len__(self):
        return len(self.buffer)

class DQN():
    def __init__(self, lr = 3e-4,gamma = 0.98, epsilon = 0.1, batch_size = 128, update_epochs = 50):
        self.q_net = Qnet()
        self.target_q_net = Qnet()
        self.target_q_net.load_state_dict(self.q_net.state_dict())
        self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr)
        self.gamma = gamma
        self.epsilon = epsilon
        self.batch_size = batch_size
        self.update_epochs = update_epochs
        self.loss = nn.MSELoss()
        self.memory = ReplayBuffer()
        self.learnstep = 0

    def choose_action(self, state):
        state = torch.from_numpy(state).float()
        state = state.unsqueeze(0)
        if np.random.random() > self.epsilon:
            action_values = self.q_net(state)
            action = torch.argmax(action_values).item()
        else:
            action = np.random.randint(0, action_dim)
        return action

    def store_transition(self, state, action, reward, next_state, done):
        self.memory.add(state, action, reward, next_state, done)

    def learn(self):
        if len(self.memory) < self.batch_size:
            return
        # 批量计算Q(s,a)
        states, actions, rewards, next_states, dones = self.memory.sample(self.batch_size)
        q_values = self.q_net(states)
        next_q_values = self.target_q_net(next_states)
        q_sa = q_values.gather(1, actions.unsqueeze(1)).squeeze(1)
        target = rewards + self.gamma * next_q_values.max(1)[0].detach() * (1 - dones)
        # 计算损失并反向传播
        loss = self.loss(q_sa, target)
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        # 目标网络更新
        self.learnstep += 1
        if self.learnstep % self.update_epochs == 0:
            self.target_q_net.load_state_dict(self.q_net.state_dict())

from tqdm import tqdm
episodes = 1000
epsilon_dacay = 0.995
epsilon_start = 1
epsilon_end = 0.05
scores = []
model = DQN()
pbar = tqdm(range(episodes), desc="Training")
for episode in pbar:
    state, _ = env.reset()
    score = 0
    done = False
    while not done:
        action = model.choose_action(state)  # 根据杆子角度简单决策
        next_state, reward, done, truncated,_ = env.step(action)
        done = done or truncated
        model.store_transition(state, action, reward, next_state, done)
        state = next_state
        model.learn()
        score += reward
        env.render()
    scores.append(score)
    model.epsilon = max(epsilon_end, model.epsilon * epsilon_dacay)
    pbar.set_postfix(ep=episode, score=score, avg100=np.mean(scores[-100:]), ε=model.epsilon)
torch.save(model.q_net.state_dict(), "../model/cartpole.pt")
print(scores)
plt.plot(scores)
plt.show()
相关推荐
Victory_orsh4 小时前
“自然搞懂”深度学习系列(基于Pytorch架构)——01初入茅庐
人工智能·pytorch·python·深度学习·算法·机器学习
Ro Jace6 小时前
模式识别与机器学习课程笔记(11):深度学习
笔记·深度学习·机器学习
碱化钾6 小时前
Lipschitz连续及其常量
人工智能·机器学习
蜉蝣之翼❉7 小时前
图像处理之浓度(AI 调研)
图像处理·人工智能·机器学习
云青黛8 小时前
轮廓系数(一个异型簇的分类标准)
人工智能·算法·机器学习
云青黛8 小时前
肘部法找k
人工智能·算法·机器学习·聚类
Hs_QY_FX9 小时前
Python 分类模型评估:从理论到实战(以信用卡欺诈检测为例)
人工智能·python·机器学习·数据挖掘·多分类评估
Gitpchy9 小时前
Day 18 推断聚类后簇的类型
python·机器学习·聚类
星期天要睡觉10 小时前
深度学习——基于 ResNet18 的图像分类训练
pytorch·python·机器学习