聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测

聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测

目录

预测效果







基本介绍

聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测 (Matlab2023b 多输入单输出)

1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!

2.聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测(Matlab2023b 多输入单输出)。

3.运行环境要求MATLAB版本为2023b及其以上。

4.评价指标包括:R2、MAE、MSE、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。

程序设计

  • 完整源码和数据获取方式私信回复聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测。-
clike 复制代码
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
zhangfeng11336 小时前
数据分析 医学分析中线性回归、Cox回归、Logistic回归的定义和区别,原理和公式,适用场景
数据分析·回归·线性回归
云和数据.ChenGuang8 小时前
人工智能实践之基于CNN的街区餐饮图片识别案例实践
人工智能·深度学习·神经网络·机器学习·cnn
人工智能培训9 小时前
什么是马尔可夫决策过程(MDP)?马尔可夫性的核心含义是什么?
人工智能·深度学习·机器学习·cnn·智能体·马尔可夫决策
Bony-11 小时前
驾驶员行为检测:基于卷积神经网络(CNN)的识别方法
人工智能·神经网络·cnn
sonadorje15 小时前
谈谈贝叶斯回归
人工智能·数据挖掘·回归
岁月的眸16 小时前
【基于循环神经网络(RNN/LSTM/GRU)算法做电池剩余寿命的思路和代码示例】
rnn·gru·lstm
木头程序员16 小时前
机器学习概述:核心范式、关键技术与应用展望
大数据·人工智能·机器学习·回归·聚类
不惑_17 小时前
通俗理解经典CNN架构:VGGNet
人工智能·神经网络·cnn
小鸡吃米…1 天前
机器学习中的回归分析
人工智能·python·机器学习·回归
Java后端的Ai之路1 天前
【人工智能领域】-YOLO目标检测算法全解析(含大白话解释)
人工智能·yolo·目标检测·cnn