聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测

聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测

目录

预测效果







基本介绍

聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测 (Matlab2023b 多输入单输出)

1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!

2.聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测(Matlab2023b 多输入单输出)。

3.运行环境要求MATLAB版本为2023b及其以上。

4.评价指标包括:R2、MAE、MSE、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。

程序设计

  • 完整源码和数据获取方式私信回复聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测。-
clike 复制代码
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
jie*10 小时前
小杰深度学习(two)——全连接与链式求导
图像处理·人工智能·pytorch·python·深度学习·分类·回归
姜—姜1 天前
使用 PyTorch 框架对 CIFAR - 10 数据集进行CNN分类
pytorch·分类·cnn
史锦彪1 天前
PyTorch 实现 CIFAR-10 图像分类:从基础 CNN 到全局平均池化的探索
pytorch·分类·cnn
码银1 天前
【数据挖掘】基于随机森林回归模型的二手车价格预测分析(数据集+源码)
随机森林·数据挖掘·回归
麒羽7602 天前
PyTorch 实现 CIFAR10 数据集的 CNN 分类实践
pytorch·分类·cnn
jie*2 天前
小杰机器学习高级(five)——分类算法的评估标准
人工智能·python·深度学习·神经网络·机器学习·分类·回归
en-route2 天前
从零开始学神经网络——GRU(门控循环单元)
人工智能·深度学习·gru
_pinnacle_3 天前
打开神经网络的黑箱(三) 卷积神经网络(CNN)的模型逻辑
人工智能·神经网络·cnn·黑箱·卷积网络
jie*3 天前
小杰机器学习(nine)——支持向量机
人工智能·python·机器学习·支持向量机·回归·聚类·sklearn
没有梦想的咸鱼185-1037-16633 天前
【遥感技术】从CNN到Transformer:基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类
pytorch·python·深度学习·机器学习·数据分析·cnn·transformer