聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测

聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测

目录

预测效果







基本介绍

聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测 (Matlab2023b 多输入单输出)

1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!

2.聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测(Matlab2023b 多输入单输出)。

3.运行环境要求MATLAB版本为2023b及其以上。

4.评价指标包括:R2、MAE、MSE、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。

程序设计

  • 完整源码和数据获取方式私信回复聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测。-
clike 复制代码
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
addaduvyhup6 小时前
【RNN-LSTM-GRU】第三篇 LSTM门控机制详解:告别梯度消失,让神经网络拥有长期记忆
rnn·gru·lstm
大学生毕业题目6 小时前
毕业项目推荐:83-基于yolov8/yolov5/yolo11的农作物杂草检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·杂草识别
㱘郳6 小时前
cifar10分类对比:使用PyTorch卷积神经网络和SVM
pytorch·分类·cnn
Moutai码农17 小时前
1.5、机器学习-回归算法
人工智能·机器学习·回归
Gyoku Mint2 天前
NLP×第六卷:她给记忆加了筛子——LSTM与GRU的贴靠机制
人工智能·深度学习·神经网络·语言模型·自然语言处理·gru·lstm
山烛2 天前
深度学习:CNN 模型训练中的学习率调整(基于 PyTorch)
人工智能·pytorch·python·深度学习·cnn·调整学习率
西猫雷婶2 天前
神经网络|(十九)概率论基础知识-伽马函数·下
人工智能·深度学习·神经网络·机器学习·回归·scikit-learn·概率论
addaduvyhup3 天前
【RNN-LSTM-GRU】第一篇 序列建模基础:理解数据的“顺序”之力
rnn·gru·lstm
THMAIL3 天前
机器学习从入门到精通 - 卷积神经网络(CNN)实战:图像识别模型搭建指南
linux·人工智能·python·算法·机器学习·cnn·逻辑回归
二向箔reverse3 天前
从传统CNN到残差网络:用PyTorch实现更强大的图像分类模型
网络·pytorch·cnn