机器学习概述自用笔记(李宏毅)

机器学习概述

机器学习即找一个复杂的人类写不出来的函数,把输入(向量,矩阵,序列)转换为输出。

regression:输出是一个数值(预测PM2.5的数值)

classification:选择设置好的类别(是否为垃圾邮件)

structured Lenrning:生成一个有结构的东西

机器学习的三步

假设求今天视频订阅的人数和昨天视频订阅的人数之间有什么关系。

第一步 Function:先设置一个y=wx+b叫做模型

第二步 Define Loss:误差损失L(b,w)

y=wx+b

频道订阅L(0.5k,1)y=1x+0.5k计算出预测值和label的差值e

第三步 optimization(最佳化)看看代入哪个数值可以使Loss最小

gradient descent : Loss-w曲线选取一个随机的w0,计算出w=w0时L对W微分,如果为负数增加W,如果为正数减少W,η走的步长自己设置(hyperparameter)W1=W0-η*L对W微分

最大的问题时微分为0的时候即看作找到了最佳的点,但是容易为Local minima ,找不到global minima(这种方法为假义的)

这三部叫做Training,只是在已知的数据集合上面去预测,统计2017年到2020年的频道订阅有周期性的原因,只考虑前一天的误差L=0.48k,考虑七天的误差L=0.38k

w为斜率,b为截距,这个函数恒为直线,但是现实情况下不一定是直线,这种限制叫Model Bias, 我们需要更复杂的方程来做模型,用多条曲线相加去拟合原来的直线

但是很多情况下原来的变化曲线很复杂,要用多条曲线去拟合相加,导致模型很复杂。甚至是原来的完美数据变化图是曲线,要用Sigmoid Function去拟合。

所以原来的相加拟合可以用这个来表示

用θ表示所有的未知数,然后去一个θ0求出η,计算出θ1,然后利用batch不断迭代,

Sigmoid---->ReLU:

两个ReLU叠起来可以代替一个Hard Sigmoid

用很多Sigmoid和ReLU即可构成Neuron,多个Neuron可以构成Neuron Netw(神经元网络),这一整套技术叫做Deep Learning

层数过多会发生Overfitting,在测试数据上表现好,在预测数据上表述的差

相关推荐
shuju_dajiwang5 分钟前
数据大集网:重构企业贷获客生态的线上获客新范式
人工智能
Sunhen_Qiletian34 分钟前
《深入浅出K-means算法:从原理到实战全解析》预告(提纲)
人工智能·机器学习·支持向量机
Giser探索家1 小时前
什么是2米分辨率卫星影像数据?
大数据·人工智能·数码相机·算法·分类·云计算
芯希望1 小时前
芯伯乐XBL6019 60V/5A DC-DC升压芯片的优质选择
大数据·人工智能·物联网·dc-dc·电子元器件·电源管理ic·xblw芯伯乐
科大饭桶2 小时前
AI大模型专题:LLM大模型(Prompt提示词工程)
人工智能·语言模型·llm·prompt·deepseek
六毛的毛2 小时前
LangChain入门:内存、记录聊天历史 ChatMessageHistory、模型、提示 ( Prompt )、模式 ( Schema )
人工智能·langchain·prompt
饭碗、碗碗香2 小时前
【Dify学习笔记】:Dify搭建表单信息提交系统
人工智能·笔记·学习·ai
哈基米喜欢哈哈哈2 小时前
Uber的MySQL实践(一)——学习笔记
数据库·笔记·后端·mysql
编程研究坊2 小时前
Neo4j APOC插件安装教程
数据库·人工智能·python·neo4j
大大花猫2 小时前
为了重温儿时回忆,我用AI做了一个小游戏合集APP【附源码】
人工智能·ai编程·游戏开发