LLM Post-Training

1. LLM的后训练分类

  • Fine-tuning
  • Reinforcement Learning
  • Test-time Scaling

|------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 方法 | 优点 | 缺点 |
| Fine-tuning | 任务适应性:能够针对特定任务或领域进行优化,提升模型在该任务上的性能。 数据驱动优化:利用标注数据直接调整模型参数,使模型更好地符合任务要求。 广泛适用性:适用于多种任务,包括文本生成、问答、分类等。 | 过拟合风险:可能导致模型在训练数据上表现良好,但在未见过的数据上性能下降。 计算成本高:需要对整个模型或大量参数进行更新,计算资源消耗大。 数据偏差敏感:如果训练数据有偏差,模型可能学习到错误的模式。 |
| Reinforcement Learning | 动态优化:能够根据环境反馈动态调整策略,优化长期目标。 适应性强:可以处理复杂的、动态变化的任务,如对话生成、多步推理等。 对齐用户意图:通过奖励信号优化模型输出,使其更符合人类偏好。 | 奖励函数设计复杂:需要精心设计奖励函数,以避免奖励误导或奖励黑客问题。 训练不稳定:由于奖励信号稀疏且主观,可能导致训练过程不稳定。 计算资源需求高:尤其是当模型规模较大时,训练成本显著增加。 |
| Test-time Scaling | 推理时优化:在推理阶段动态调整模型行为,无需重新训练模型。 资源灵活分配:可以根据任务复杂度灵活调整计算资源,提高推理效率。 性能提升:在某些任务上,通过优化推理过程可以显著提升模型性能。 | 推理延迟增加:在某些情况下,如使用复杂的搜索策略,可能导致推理时间延长。 适用性有限:某些方法可能仅适用于特定类型的任务或模型。 环境依赖:某些技术(如蒙特卡洛树搜索)可能对环境设置较为敏感。 |

2. 微调

3. 强化学习

4. Test Time Scaling(测试时扩展)

5. 参考

https://arxiv.org/pdf/2502.21321

https://github.com/mbzuai-oryx/Awesome-LLM-Post-training

相关推荐
沃达德软件5 分钟前
智慧警务图像融合大数据
大数据·图像处理·人工智能·目标检测·计算机视觉·目标跟踪
QxQ么么33 分钟前
移远通信(桂林)26校招-助理AI算法工程师-面试纪录
人工智能·python·算法·面试
愤怒的可乐1 小时前
从零构建大模型智能体:统一消息格式,快速接入大语言模型
人工智能·语言模型·自然语言处理
每天一个java小知识3 小时前
AI Agent
人工智能
猫头虎3 小时前
如何解决 pip install 编译报错 fatal error: hdf5.h: No such file or directory(h5py)问题
人工智能·python·pycharm·开源·beautifulsoup·ai编程·pip
龙赤子3 小时前
人工智能AI的大框架
人工智能
比奥利奥还傲.3 小时前
本地+AI+大模型自由用!Cherry+Studio打破局域网限制
人工智能
雪碧聊技术3 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
β添砖java3 小时前
机器学习初级
人工智能·机器学习
陈奕昆3 小时前
n8n实战营Day3:电商订单全流程自动化·需求分析与流程拆解
大数据·开发语言·人工智能·自动化·需求分析·n8n