LLM Post-Training

1. LLM的后训练分类

  • Fine-tuning
  • Reinforcement Learning
  • Test-time Scaling

|------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 方法 | 优点 | 缺点 |
| Fine-tuning | 任务适应性:能够针对特定任务或领域进行优化,提升模型在该任务上的性能。 数据驱动优化:利用标注数据直接调整模型参数,使模型更好地符合任务要求。 广泛适用性:适用于多种任务,包括文本生成、问答、分类等。 | 过拟合风险:可能导致模型在训练数据上表现良好,但在未见过的数据上性能下降。 计算成本高:需要对整个模型或大量参数进行更新,计算资源消耗大。 数据偏差敏感:如果训练数据有偏差,模型可能学习到错误的模式。 |
| Reinforcement Learning | 动态优化:能够根据环境反馈动态调整策略,优化长期目标。 适应性强:可以处理复杂的、动态变化的任务,如对话生成、多步推理等。 对齐用户意图:通过奖励信号优化模型输出,使其更符合人类偏好。 | 奖励函数设计复杂:需要精心设计奖励函数,以避免奖励误导或奖励黑客问题。 训练不稳定:由于奖励信号稀疏且主观,可能导致训练过程不稳定。 计算资源需求高:尤其是当模型规模较大时,训练成本显著增加。 |
| Test-time Scaling | 推理时优化:在推理阶段动态调整模型行为,无需重新训练模型。 资源灵活分配:可以根据任务复杂度灵活调整计算资源,提高推理效率。 性能提升:在某些任务上,通过优化推理过程可以显著提升模型性能。 | 推理延迟增加:在某些情况下,如使用复杂的搜索策略,可能导致推理时间延长。 适用性有限:某些方法可能仅适用于特定类型的任务或模型。 环境依赖:某些技术(如蒙特卡洛树搜索)可能对环境设置较为敏感。 |

2. 微调

3. 强化学习

4. Test Time Scaling(测试时扩展)

5. 参考

https://arxiv.org/pdf/2502.21321

https://github.com/mbzuai-oryx/Awesome-LLM-Post-training

相关推荐
Shawn_Shawn5 小时前
人工智能入门概念介绍
人工智能
极限实验室5 小时前
程序员爆哭!我们让 COCO AI 接管 GitLab 审查后,团队直接起飞:连 CTO 都说“这玩意儿比人靠谱多了
人工智能·gitlab
Maynor9966 小时前
Z-Image: 100% Free AI Image Generator
人工智能
爬点儿啥6 小时前
[Ai Agent] 10 MCP基础:快速编写你自己的MCP服务器(Server)
人工智能·ai·langchain·agent·transport·mcp
张人玉7 小时前
百度 AI 图像识别 WinForms 应用代码分析笔记
人工智能·笔记·百度
测试人社区-小明7 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
Spring AI学习7 小时前
Spring AI深度解析(9/50):可观测性与监控体系实战
java·人工智能·spring
罗西的思考8 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
dajun1811234568 小时前
反 AI 生成技术兴起:如何识别与过滤海量的 AI 伪造内容?
人工智能
人邮异步社区8 小时前
PRML为何是机器学习的经典书籍中的经典?
人工智能·机器学习