理解什么是叶子张量和非叶子张量?

在 PyTorch 中,叶子张量(Leaf Tensor)和非叶子张量(Non-Leaf Tensor)是计算图中的两个重要概念:

叶子张量(Leaf Tensor)

叶子张量是计算图中的起始点,它们通常是用户直接创建的张量,并且没有其他张量作为它们的输入。换句话说,叶子张量是那些不需要通过任何计算就能获得的张量。在神经网络中,叶子张量通常对应于模型的输入数据和模型的参数(权重和偏置)。

特征包括:

  • 是计算图的起点。
  • 通常对应于模型的参数或外部输入数据。
  • 可以设置 requires_grad=True 来追踪梯度,以便在训练过程中更新这些参数。

非叶子张量(Non-Leaf Tensor)

非叶子张量是计算图中通过某些操作从其他张量派生出来的张量。它们是计算图的中间节点,其值依赖于一个或多个其他张量的值。当你对叶子张量或其他非叶子张量执行操作(如加法、乘法等)时,就会创建非叶子张量。

特征包括:

  • 是通过计算图中的操作生成的。
  • 依赖于其他张量的值。
  • 默认情况下,它们的 .grad 属性在反向传播时不会被填充,除非你显式调用 retain_grad() 方法。

示例

python 复制代码
import torch

# 创建叶子张量 x,它是一个直接由用户创建的张量
x = torch.randn(2, 2, requires_grad=True)

# 创建非叶子张量 y,它是通过操作 x 得到的
y = x * 2

# 创建另一个非叶子张量 z,它是通过操作 y 得到的
z = y + 3

在这个示例中:

  • x 是叶子张量,因为它是直接创建的,并且没有依赖于其他张量。
  • yz 是非叶子张量,因为它们是通过操作 xy 得到的。

梯度计算

在反向传播时,PyTorch 会自动计算叶子张量的梯度,并将这些梯度存储在叶子张量的 .grad 属性中。对于非叶子张量,你需要显式调用 retain_grad() 方法,才能在反向传播时计算和存储它们的梯度。

python 复制代码
# 反向传播计算梯度
z.backward()

# 打印 x, y, z 的梯度
print("Gradient of x:", x.grad)  # 可以访问,因为 x 是叶子张量
print("Gradient of y:", y.grad)  # 会报警告,因为 y 是非叶子张量,且没有调用 retain_grad()
print("Gradient of z:", z.grad)  # 会报警告,因为 z 是非叶子张量,且没有调用 retain_grad()

为了能够访问 yz 的梯度,你需要在创建它们之后调用 retain_grad() 方法:

python 复制代码
y.retain_grad()
z.retain_grad()

# 反向传播计算梯度
z.backward()

# 打印 x, y, z 的梯度
print("Gradient of x:", x.grad)  # 可以访问
print("Gradient of y:", y.grad)  # 现在可以访问
print("Gradient of z:", z.grad)  # 现在可以访问

贴个网图:

相关推荐
墨绿色的摆渡人41 分钟前
零碎的知识点(二十):3D 高斯为什么是椭球
决策树·机器学习·3d
极客BIM工作室1 小时前
VideoCAD:大规模CAD UI交互与3D推理视频数据集,开启智能CAD建模新范式
人工智能·机器学习
二川bro2 小时前
2025年Python机器学习全栈指南:从基础到AI项目部署
人工智能·python·机器学习
Learn Beyond Limits3 小时前
Correlation vs Cosine vs Euclidean Distance|相关性vs余弦相似度vs欧氏距离
人工智能·python·神经网络·机器学习·ai·数据挖掘
Q***f63511 小时前
机器学习书籍
人工智能·机器学习
gorgeous(๑>؂<๑)13 小时前
【ICLR26匿名投稿】Context-Aware ViT:让目标检测真正“看清上下文”的增强策略
人工智能·目标检测·机器学习·计算机视觉·目标跟踪
张人玉14 小时前
OCR 字符识别助手详解(含 Halcon 示例)
人工智能·机器学习·计算机视觉·halcon
z***I39414 小时前
Git机器学习
人工智能·git·机器学习
信息快讯16 小时前
【机器学习在智能水泥基复合材料中的应用领域】
人工智能·机器学习·材料工程·复合材料·水泥基
q***T58316 小时前
机器学习基础
人工智能·机器学习