trl的安装与单GPU多GPU测试

文章目录

  • [0 相关资料](#0 相关资料)
  • [1 源码安装](#1 源码安装)
  • [2 Qwen2.5-0.5B-Instruct 模型下载](#2 Qwen2.5-0.5B-Instruct 模型下载)
  • [3 训练demo](#3 训练demo)
  • [4 在多个 GPU/节点上进行训练](#4 在多个 GPU/节点上进行训练)
  • 总结

0 相关资料

https://github.com/huggingface/trl
https://blog.csdn.net/weixin_42486623/article/details/134326187

TRL 是一个先进的库,专为训练后基础模型而设计,采用了监督微调 (SFT)、近端策略优化 (PPO) 和直接偏好优化 (DPO) 等先进技术。TRL 建立在 🤗 Transformers 生态系统之上,支持多种模型架构和模态,并可在各种硬件配置上进行扩展。

b站视频:https://www.bilibili.com/video/BV18ndfYfEcz/

PyTorch / 2.3.0 / 3.12(ubuntu22.04) / 12.1

1 源码安装

复制代码
source /etc/network_turbo
git clone https://github.com/huggingface/trl.git
cd trl/
pip install -e .

source /etc/network_turbo
pip install trl transformers datasets accelerate

2 Qwen2.5-0.5B-Instruct 模型下载

https://www.modelscope.cn/models/Qwen/Qwen2.5-0.5B-Instruct

bash 复制代码
source /etc/network_turbo
pip install modelscope

采用SDK方式下载

bash 复制代码
from modelscope import snapshot_download

# 指定模型的下载路径
cache_dir = '/root/'
# 调用 snapshot_download 函数下载模型
model_dir = snapshot_download('Qwen/Qwen2.5-0.5B-Instruct', cache_dir=cache_dir)

print(f"模型已下载到: {model_dir}")

3 训练demo

demo.py

执行脚本前,输入:

复制代码
source /etc/network_turbo

from trl import SFTTrainer
from datasets import load_dataset

dataset = load_dataset("trl-lib/Capybara", split="train")

trainer = SFTTrainer(
    model="/root/Qwen/Qwen2.5-0.5B-Instruct",
    train_dataset=dataset,
)
trainer.train()
复制代码
00:15<1:57:58,

4 在多个 GPU/节点上进行训练

执行脚本前,输入:

复制代码
source /etc/network_turbo
bash 复制代码
accelerate launch --config_file=examples/accelerate_configs/multi_gpu.yaml --num_processes 2 demo.py --all_arguments_of_the_script

总结

一块L20 GPU 48G,需要2小时

两块L20 GPU 48G,需要0.5小时

速度提升明显

相关推荐
audyxiao0018 小时前
会议热点扫描|智慧教育顶级会议AIED 2025的研究热点可视化分析
人工智能·智慧教育·会议热点·aied
执笔论英雄8 小时前
【梯度检查点】
人工智能
虫小宝8 小时前
电商AI导购系统工程化实践:模型训练、部署与在线推理的架构设计
人工智能
Dreaming_of_you8 小时前
pytorch/cv2/pil/torchvision处理图像缩小的最佳方案
人工智能·pytorch·python·opencv
shangjian0078 小时前
AI-大语言模型LLM-Transformer架构3-嵌入和位置编码
人工智能·语言模型·transformer
ws2019078 小时前
智驾与电池双线突破?AUTO TECH China 2026广州新能源汽车展解码产业新局
大数据·人工智能·科技·汽车
美狐美颜SDK开放平台8 小时前
直播场景下抖动特效的实现方案:美颜sdk开发经验分享
前端·人工智能·美颜sdk·直播美颜sdk·视频美颜sdk
2501_941982058 小时前
企业微信外部群精准运营:API 主动推送消息开发指南
大数据·人工智能·企业微信
Testopia8 小时前
走一遍 AI 学习之路 —— AI实例系列说明
开发语言·人工智能·python
琅琊榜首20208 小时前
用AI打造付费短篇小说脑洞:从灵感激活到落地变现
人工智能