毛笔书体检测-hog+svm python opencv源码

链接:https://pan.baidu.com/s/1l-bw8zR9psv1HycmMqQBqQ?pwd=2ibp

提取码:2ibp

--来自百度网盘超级会员V2的分享

1、毛笔字检测运行流程

如果解压文件发现乱码,可以下载Bandizip

解压文件 数据集在百度网盘里面

将文件名字改成images

复制代码
conda create -n 环境名称 python=3.8
conda activate 环境名称

然后配置环境

复制代码
pip install requirements.txt

先运行cat_hog.ipynb观看猫咪图片的hog图片

第一次运行的话需要安装jupyter,过一段时间安装成功,会弹出如下图片(如果没有弹出再点击一次运行)点击python环境,选择你的虚拟环境

点击运行程序

之后打开hog+svm.ipynb

之后他就会安装一些依赖包,然后就可以运行每一个步骤了。运行需要依次点击图片的左边运行按钮,不能第3段程序比2段程序先运行,需要一步一步来,你就能看到每一步的结果了。

如果有些错误就需要下载相关的模块

运行到这里需要花一点时间

2、毛笔字检测程序分析

hog算法一般用来检测行人、车辆等边缘信息丰富的目标

  1. 为正常读取照片

  2. 读取数据的尺寸大小,并且用hog提取毛笔字的边缘特征

hog(image, orientations =4, pixels_per_cell=(16, 16),

cells_per_block =(1, 1), visualize=True)

是用定义hog的参数

hog(

image, # 输入图像(需为灰度图)

orientations=4, # 方向梯度分成的角度区间数(默认4)

pixels_per_cell=(16, 16), # 每个单元格的像素大小(宽, 高)

cells_per_block=(1, 1), # 每个块包含的单元格数(宽, 高)

visualize=True # 是否返回HOG特征的可视化图像

)

  • 返回值

visualize=True 时,返回两个结果:

  • HOG特征向量:一维数组,包含所有块的归一化梯度直方图信息。

  • 可视化图像:二维数组,直观显示图像中每个单元格的梯度方向。

具体理论可以看这个论文: https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

  1. 训练级和测试集的定义,批量处理图片

  2. 输出zhunquelv

  3. 保存模型

  4. 调用保存的模型测试数据集

  5. 生成验证表格

相关推荐
Ao00000011 分钟前
机器学习——主成分分析PCA
人工智能·机器学习
硅谷秋水22 分钟前
Impromptu VLA:用于驾驶视觉-语言-动作模型的开放权重和开放数据
人工智能·机器学习·计算机视觉·语言模型·自动驾驶
Matlab仿真实验室1 小时前
基于Matlab实现LDA算法
开发语言·算法·matlab
@蓝莓果粒茶2 小时前
LeetCode第244题_最短单词距离II
c++·笔记·学习·算法·leetcode·职场和发展·c#
宋一诺332 小时前
机器学习——随机森林算法
算法·随机森林·机器学习
无聊的小坏坏2 小时前
二分查找的边界艺术:LeetCode 34 题深度解析
算法·leetcode
CHNLee玉米2 小时前
题目解析 1.找单独的数 | 豆包MarsCode AI刷题
算法
緈福的街口2 小时前
【leetcode】20. 有效的括号
linux·算法·leetcode
越轨3 小时前
【Pytorch学习笔记】模型模块08——AlexNet模型详解
人工智能·pytorch·笔记·深度学习·学习·机器学习
PixelMind3 小时前
【LUT技术专题】图像自适应3DLUT代码讲解
人工智能·python·算法·lut