R语言操作练习2

  1. 加载tidyr包,探索table1,table2,table3,table4a, table4b维度和结构

  2. 将table4a进行宽转长操作,列名为country,year,population

  3. 基于题2,以country为横坐标,population为纵坐标,fill=year,采用dodge形式作柱状图,颜色为#022a99和#fbcd08

  4. 基于题2,以country为横坐标,population为纵坐标,fill=year,作堆叠柱状图,颜色为#022a99和#fbcd08

  5. 基于题2,以country为横坐标,population为纵坐标,year作为分面对象,作分面柱状图,主题用theme_bw(),采用Pastel3填充country

  6. 基于题2,以country为横坐标,population为纵坐标,year作为分面对象,作分面柱状图,主题采用theme()

  7. 绘制参考范例中的和弦图

    https://jokergoo.github.io/circlize_book/book/the-chorddiagram-function.html#scaling

  8. 绘制参考范例中的峰峦图

    https://r-graph-gallery.com/294-basic-ridgeline-plot.html

r 复制代码
install.packages("tidyr")
install.packages("ggplot2")
install.packages("dplyr")
install.packages("RColorBrewer")
install.packages("circlize")
install.packages("ggridges")
library(ggridges)
library(tidyr)
library(ggplot2)
library(dplyr)
library(RColorBrewer)
library(circlize)
str(table1)
str(table2)
str(table3)
str(table4a)
str(table4b)
table4a_long <- table4a %>%
  pivot_longer(cols = -country, names_to = "year", values_to = "population")
ggplot(table4a_long, aes(x = country, y = population, fill = year)) +
  geom_bar(stat = "identity", position = "dodge") +
  scale_fill_manual(values = c("#022a99", "#fbcd08")) +
  theme_minimal()
ggplot(table4a_long, aes(x = country, y = population, fill = year)) +
  geom_bar(stat = "identity") +
  scale_fill_manual(values = c("#022a99", "#fbcd08")) +
  theme_minimal()
ggplot(table4a_long, aes(x = country, y = population, fill = country)) +
  geom_bar(stat = "identity") +
  scale_fill_brewer(palette = "Pastel3") +
  facet_wrap(~year, scales = "free_y") +
  theme_bw()
ggplot(table4a_long, aes(x = country, y = population, fill = country)) +
  geom_bar(stat = "identity") +
  facet_wrap(~year, scales = "free_y") +
  theme()
chord_data <- data.frame(
  from = c("A", "B", "C"),
  to = c("D", "E", "F"),
  value = c(10, 20, 30)
)
chordDiagram(chord_data, transparency = 0.5)
ridge_data <- data.frame(
  country = rep(c("Country1", "Country2"), each = 100),
  year = rep(rep(2000:2001, each = 50), times = 2),
  population = rnorm(200, mean = 100, sd = 20)
)
ridge_data$year <- as.factor(ridge_data$year)
ggplot(ridge_data, aes(x = population, y = year, fill = country)) +
  geom_density_ridges(alpha = 0.7, position = "identity", scale = 0.9) +
  scale_fill_manual(values = c("#022a99", "#fbcd08")) +
  labs(title = "Population Distribution by Country and Year",
       x = "Population", y = "Year") +
  theme_ridges()
相关推荐
Tiger Z2 天前
《R for Data Science (2e)》免费中文翻译 (第12章) --- Logical vectors(1)
数据分析·r语言·数据科学·免费书籍
AI纪元故事会3 天前
《目标检测全解析:从R-CNN到DETR,六大经典模型深度对比与实战指南》
人工智能·yolo·目标检测·r语言·cnn
小八四爱吃甜食4 天前
【R语言】构建GO、KEGG相关不同物种的R包
开发语言·golang·r语言
梦想的初衷~5 天前
生命周期评价(LCA):理论、方法与工具、典型案例全解析
r语言·农业·林业·环境科学·地理·气候变化·生命周期评价
asyxchenchong8885 天前
OpenLCA、GREET、R语言的生命周期评价方法、模型构建
开发语言·r语言
没有梦想的咸鱼185-1037-16635 天前
【生命周期评价(LCA)】基于OpenLCA、GREET、R语言的生命周期评价方法、模型构建
开发语言·数据分析·r语言
zhangfeng11336 天前
亲测有效的mem 流行病预测,时间序列预测,r语言做移动流行区间法,MEM流行病阈值设置指南
开发语言·r语言·生物信息
普通网友7 天前
Golang笔记——Interface类型
r语言
maizeman1268 天前
用R语言生成指定品种与对照的一元回归直线(含置信区间)
开发语言·回归·r语言·置信区间·品种测试
兮兮能吃能睡8 天前
R语言模型分析(一)(1)
开发语言·r语言