R语言操作练习2

  1. 加载tidyr包,探索table1,table2,table3,table4a, table4b维度和结构

  2. 将table4a进行宽转长操作,列名为country,year,population

  3. 基于题2,以country为横坐标,population为纵坐标,fill=year,采用dodge形式作柱状图,颜色为#022a99和#fbcd08

  4. 基于题2,以country为横坐标,population为纵坐标,fill=year,作堆叠柱状图,颜色为#022a99和#fbcd08

  5. 基于题2,以country为横坐标,population为纵坐标,year作为分面对象,作分面柱状图,主题用theme_bw(),采用Pastel3填充country

  6. 基于题2,以country为横坐标,population为纵坐标,year作为分面对象,作分面柱状图,主题采用theme()

  7. 绘制参考范例中的和弦图

    https://jokergoo.github.io/circlize_book/book/the-chorddiagram-function.html#scaling

  8. 绘制参考范例中的峰峦图

    https://r-graph-gallery.com/294-basic-ridgeline-plot.html

r 复制代码
install.packages("tidyr")
install.packages("ggplot2")
install.packages("dplyr")
install.packages("RColorBrewer")
install.packages("circlize")
install.packages("ggridges")
library(ggridges)
library(tidyr)
library(ggplot2)
library(dplyr)
library(RColorBrewer)
library(circlize)
str(table1)
str(table2)
str(table3)
str(table4a)
str(table4b)
table4a_long <- table4a %>%
  pivot_longer(cols = -country, names_to = "year", values_to = "population")
ggplot(table4a_long, aes(x = country, y = population, fill = year)) +
  geom_bar(stat = "identity", position = "dodge") +
  scale_fill_manual(values = c("#022a99", "#fbcd08")) +
  theme_minimal()
ggplot(table4a_long, aes(x = country, y = population, fill = year)) +
  geom_bar(stat = "identity") +
  scale_fill_manual(values = c("#022a99", "#fbcd08")) +
  theme_minimal()
ggplot(table4a_long, aes(x = country, y = population, fill = country)) +
  geom_bar(stat = "identity") +
  scale_fill_brewer(palette = "Pastel3") +
  facet_wrap(~year, scales = "free_y") +
  theme_bw()
ggplot(table4a_long, aes(x = country, y = population, fill = country)) +
  geom_bar(stat = "identity") +
  facet_wrap(~year, scales = "free_y") +
  theme()
chord_data <- data.frame(
  from = c("A", "B", "C"),
  to = c("D", "E", "F"),
  value = c(10, 20, 30)
)
chordDiagram(chord_data, transparency = 0.5)
ridge_data <- data.frame(
  country = rep(c("Country1", "Country2"), each = 100),
  year = rep(rep(2000:2001, each = 50), times = 2),
  population = rnorm(200, mean = 100, sd = 20)
)
ridge_data$year <- as.factor(ridge_data$year)
ggplot(ridge_data, aes(x = population, y = year, fill = country)) +
  geom_density_ridges(alpha = 0.7, position = "identity", scale = 0.9) +
  scale_fill_manual(values = c("#022a99", "#fbcd08")) +
  labs(title = "Population Distribution by Country and Year",
       x = "Population", y = "Year") +
  theme_ridges()
相关推荐
烟锁池塘柳06 小时前
【R语言】R 语言中打印含有双引号的字符串时会出现 “\” 的原因解析
r语言
全栈开发圈4 天前
干货分享|如何从0到1掌握R语言数据分析
开发语言·数据分析·r语言
小杜的生信筆記7 天前
基于R语言,“上百种机器学习模型”学习教程 | Mime包
开发语言·学习·机器学习·r语言·sci
在打豆豆的小潘学长7 天前
【R语言】多样本单细胞分析_SCTransform+Harmony方案(2)
开发语言·r语言
TS的美梦7 天前
ROGUE: 【张院士团队R包】一种基于熵的用于评估单细胞群体纯度的度量标准
开发语言·r语言
weixin_493202639 天前
R语言代码加密(1)
r语言
Tiger Z9 天前
《R for Data Science (2e)》免费中文翻译 (第3章) --- Data transformation(2)
r语言·数据科学·中文翻译
星石传说11 天前
使用R将nc文件转换为asc文件或者tif文件
r语言·生信
Mister Leon12 天前
机器学习Adaboost算法----SAMME算法和SAMME.R算法
算法·机器学习·r语言
Tiger Z13 天前
R 语言科研绘图第 67 期 --- 箱线图-显著性
r语言·论文·科研·绘图·研究生