R语言操作练习2

  1. 加载tidyr包,探索table1,table2,table3,table4a, table4b维度和结构

  2. 将table4a进行宽转长操作,列名为country,year,population

  3. 基于题2,以country为横坐标,population为纵坐标,fill=year,采用dodge形式作柱状图,颜色为#022a99和#fbcd08

  4. 基于题2,以country为横坐标,population为纵坐标,fill=year,作堆叠柱状图,颜色为#022a99和#fbcd08

  5. 基于题2,以country为横坐标,population为纵坐标,year作为分面对象,作分面柱状图,主题用theme_bw(),采用Pastel3填充country

  6. 基于题2,以country为横坐标,population为纵坐标,year作为分面对象,作分面柱状图,主题采用theme()

  7. 绘制参考范例中的和弦图

    https://jokergoo.github.io/circlize_book/book/the-chorddiagram-function.html#scaling

  8. 绘制参考范例中的峰峦图

    https://r-graph-gallery.com/294-basic-ridgeline-plot.html

r 复制代码
install.packages("tidyr")
install.packages("ggplot2")
install.packages("dplyr")
install.packages("RColorBrewer")
install.packages("circlize")
install.packages("ggridges")
library(ggridges)
library(tidyr)
library(ggplot2)
library(dplyr)
library(RColorBrewer)
library(circlize)
str(table1)
str(table2)
str(table3)
str(table4a)
str(table4b)
table4a_long <- table4a %>%
  pivot_longer(cols = -country, names_to = "year", values_to = "population")
ggplot(table4a_long, aes(x = country, y = population, fill = year)) +
  geom_bar(stat = "identity", position = "dodge") +
  scale_fill_manual(values = c("#022a99", "#fbcd08")) +
  theme_minimal()
ggplot(table4a_long, aes(x = country, y = population, fill = year)) +
  geom_bar(stat = "identity") +
  scale_fill_manual(values = c("#022a99", "#fbcd08")) +
  theme_minimal()
ggplot(table4a_long, aes(x = country, y = population, fill = country)) +
  geom_bar(stat = "identity") +
  scale_fill_brewer(palette = "Pastel3") +
  facet_wrap(~year, scales = "free_y") +
  theme_bw()
ggplot(table4a_long, aes(x = country, y = population, fill = country)) +
  geom_bar(stat = "identity") +
  facet_wrap(~year, scales = "free_y") +
  theme()
chord_data <- data.frame(
  from = c("A", "B", "C"),
  to = c("D", "E", "F"),
  value = c(10, 20, 30)
)
chordDiagram(chord_data, transparency = 0.5)
ridge_data <- data.frame(
  country = rep(c("Country1", "Country2"), each = 100),
  year = rep(rep(2000:2001, each = 50), times = 2),
  population = rnorm(200, mean = 100, sd = 20)
)
ridge_data$year <- as.factor(ridge_data$year)
ggplot(ridge_data, aes(x = population, y = year, fill = country)) +
  geom_density_ridges(alpha = 0.7, position = "identity", scale = 0.9) +
  scale_fill_manual(values = c("#022a99", "#fbcd08")) +
  labs(title = "Population Distribution by Country and Year",
       x = "Population", y = "Year") +
  theme_ridges()
相关推荐
兮兮能吃能睡2 天前
R语言术语(2)
开发语言·r语言
小火柴1232 天前
利用R绘制箱线图
开发语言·r语言
天桥下的卖艺者2 天前
R语言手搓一个计算生存分析C指数(C-index)的函数算法
c语言·算法·r语言
Tiger Z2 天前
《R for Data Science (2e)》免费中文翻译 (第10章) --- Exploratory data
r语言·数据科学·中文翻译
拓端研究室3 天前
视频讲解|Python遗传算法GA在车辆路径规划VRP数据优化中的应用
开发语言·人工智能·r语言
兮兮能吃能睡3 天前
资料片:R语言中常见的英文术语及其含义
开发语言·r语言
绵羊20233 天前
R语言绘制热图
开发语言·r语言
青铜弟弟5 天前
R语言利用Export包导出pptx格式的文件有错误的原因
开发语言·r语言
维维180-3121-14555 天前
R语言空间数据分析实战:机器学习预测、尺度转换与地统计建模
r语言·生态·环境·气象·气候·水文·地质
生信小窝5 天前
068B-基于R语言平台Biomod2集成模型的物种分布模型构建和数据可视化教程【2027】
开发语言·信息可视化·r语言