R语言操作练习2

  1. 加载tidyr包,探索table1,table2,table3,table4a, table4b维度和结构

  2. 将table4a进行宽转长操作,列名为country,year,population

  3. 基于题2,以country为横坐标,population为纵坐标,fill=year,采用dodge形式作柱状图,颜色为#022a99和#fbcd08

  4. 基于题2,以country为横坐标,population为纵坐标,fill=year,作堆叠柱状图,颜色为#022a99和#fbcd08

  5. 基于题2,以country为横坐标,population为纵坐标,year作为分面对象,作分面柱状图,主题用theme_bw(),采用Pastel3填充country

  6. 基于题2,以country为横坐标,population为纵坐标,year作为分面对象,作分面柱状图,主题采用theme()

  7. 绘制参考范例中的和弦图

    https://jokergoo.github.io/circlize_book/book/the-chorddiagram-function.html#scaling

  8. 绘制参考范例中的峰峦图

    https://r-graph-gallery.com/294-basic-ridgeline-plot.html

r 复制代码
install.packages("tidyr")
install.packages("ggplot2")
install.packages("dplyr")
install.packages("RColorBrewer")
install.packages("circlize")
install.packages("ggridges")
library(ggridges)
library(tidyr)
library(ggplot2)
library(dplyr)
library(RColorBrewer)
library(circlize)
str(table1)
str(table2)
str(table3)
str(table4a)
str(table4b)
table4a_long <- table4a %>%
  pivot_longer(cols = -country, names_to = "year", values_to = "population")
ggplot(table4a_long, aes(x = country, y = population, fill = year)) +
  geom_bar(stat = "identity", position = "dodge") +
  scale_fill_manual(values = c("#022a99", "#fbcd08")) +
  theme_minimal()
ggplot(table4a_long, aes(x = country, y = population, fill = year)) +
  geom_bar(stat = "identity") +
  scale_fill_manual(values = c("#022a99", "#fbcd08")) +
  theme_minimal()
ggplot(table4a_long, aes(x = country, y = population, fill = country)) +
  geom_bar(stat = "identity") +
  scale_fill_brewer(palette = "Pastel3") +
  facet_wrap(~year, scales = "free_y") +
  theme_bw()
ggplot(table4a_long, aes(x = country, y = population, fill = country)) +
  geom_bar(stat = "identity") +
  facet_wrap(~year, scales = "free_y") +
  theme()
chord_data <- data.frame(
  from = c("A", "B", "C"),
  to = c("D", "E", "F"),
  value = c(10, 20, 30)
)
chordDiagram(chord_data, transparency = 0.5)
ridge_data <- data.frame(
  country = rep(c("Country1", "Country2"), each = 100),
  year = rep(rep(2000:2001, each = 50), times = 2),
  population = rnorm(200, mean = 100, sd = 20)
)
ridge_data$year <- as.factor(ridge_data$year)
ggplot(ridge_data, aes(x = population, y = year, fill = country)) +
  geom_density_ridges(alpha = 0.7, position = "identity", scale = 0.9) +
  scale_fill_manual(values = c("#022a99", "#fbcd08")) +
  labs(title = "Population Distribution by Country and Year",
       x = "Population", y = "Year") +
  theme_ridges()
相关推荐
高-老师1 天前
基于R语言的贝叶斯网络模型的实践技术应用;R语言实现Bayesian Network分析的基本流程
开发语言·r语言·贝叶斯网络
AC赳赳老秦2 天前
科研数据叙事:DeepSeek将实验数据转化为故事化分析框架
开发语言·人工智能·数据分析·r语言·时序数据库·big data·deepseek
Kratzdisteln2 天前
【MCM】((N_G,N_A)) 可行域; ((C_R,c_E)) 分区图
c语言·开发语言·r语言
张小凡vip2 天前
数据挖掘(八)--让Jupyter notebook支持R语言环境
jupyter·数据挖掘·r语言
青灯照颦微3 天前
【R】三种方式安装R包
开发语言·r语言
weixin_462446234 天前
PaddleX 3.2 人脸识别实战:自定义人脸库 + CartoonFace 官方案例 Top-K 识别完整指南
开发语言·r语言
Tiger Z4 天前
《R for Data Science (2e)》免费中文翻译 (第19章) --- Joins(1)
r语言·编程·数据科学
Tiger Z4 天前
《R for Data Science (2e)》免费中文翻译 (第18章) --- Missing values
开发语言·r语言
带我去滑雪4 天前
R语言抑郁症状网络分析
r语言