TMDOG——语言大模型进行意图分析驱动后端实践

语言大模型进行意图分析驱动后端实践

项目概述

项目地址:https://github.com/TMDOG666/AI_Backend_Demo

该项目通过语言大模型,通过分析用户意图拆分任务构建API调用链来驱动后端实践。

以一个简单的教务系统后端为例,将教务系统后端接口文档作为知识库,精确分析用户意图,自动执行业务流程。

使得用户可以在聊天交互页面实现较为复杂的业务操作,简化用户操作,并与后端接口解耦,具有良好的灵活性。

操作示例

核心架构

  1. 意图分析层 - 核心处理用户输入的自然语言意图
  2. 知识库检索层 - 通过RAG技术检索相关API文档
  3. 任务分解层 - 将复杂请求拆分为可执行的API调用序列
  4. 执行引擎层 - 实际调用后端API并处理响应

意图分析层深度解析

1. 意图识别技术栈

复制代码
**Prompt工程**:精心设计的提示模板引导模型准确理解意图
**RAG(检索增强生成)**:将后端API文档和业务调用逻辑文档作为知识库

2. 多阶段意图分析流程

  1. 初级意图分类

    • 将用户输入内容并检索检索知识库,分析意图拆分任务

    • 使用轻量级模型(Qwen2.5-14b)提高响应速度

  2. 细粒度意图解析

    • 将拆分步骤检索知识库获取精确的API信息

    • 根据意图分析结果生成API调用计划链

3. 知识库增强的意图分析

API文档向量化

• 使用嵌入模型进行文本向量化

• 使用ChromaDB存储和检索API文档片段

• 查询与用户意图最相关的API描述

执行引擎优化

  1. 智能重试机制

    • 处理API失败情况

  2. 响应后处理

    • 自然语言生成

性能优化策略

  1. 意图缓存
    • 缓存常见意图的解析结果

总结与展望

优点

  • 该架构通过多层次的意图分析,实现了从自然语言到系统API的精准转换

  • 意图分析并不依赖重量级参数的模型,即使是参数规模较小的模型也可以实现功能

  • 与后端解耦,不需要为意图分析层修改后端逻辑,仅需提供API文档与操作逻辑文档作为知识库

缺陷

  • 毕竟是一个简易的DEMO,并不支持上下文,如果支持上下文可以实现更复杂、更流畅的用户交互流程

  • 性能问题,使用的是硅基流动大模型服务商,由于响应延迟,处理用户输入延迟很大

  • 交互过于简单,博主想的是能不能和前端联动,实现意图分析驱动前端,就可以实现更复杂的业务逻辑

这种意图驱动的后端实践为构建智能交互系统提供了可扩展的框架,特别适合需要将自然语言转换为复杂系统操作的场景。

相关推荐
SEO_juper2 小时前
LLMs.txt 创建指南:为大型语言模型优化您的网站
人工智能·ai·语言模型·自然语言处理·数字营销
HPC_C3 小时前
SGLang: Efficient Execution of Structured Language Model Programs
人工智能·语言模型·自然语言处理
码界奇点4 小时前
解密AI语言模型从原理到应用的全景解析
人工智能·语言模型·自然语言处理·架构
余衫马4 小时前
你好,未来:零基础看懂大语言模型
人工智能·语言模型·自然语言处理·智能体
喜欢吃豆6 小时前
llama.cpp 全方位技术指南:从底层原理到实战部署
人工智能·语言模型·大模型·llama·量化·llama.cpp
Sirius Wu11 小时前
深入浅出:Tongyi DeepResearch技术解读
人工智能·语言模型·langchain·aigc
flex888815 小时前
输入一个故事主题,使用大语言模型生成故事视频【视频中包含大模型生成的图片、故事内容,以及音频和字幕信息】
人工智能·语言模型·自然语言处理
TTGGGFF15 小时前
人工智能:大语言模型或为死胡同?拆解AI发展的底层逻辑、争议与未来方向
大数据·人工智能·语言模型
Coovally AI模型快速验证18 小时前
视觉语言模型(VLM)深度解析:如何用它来处理文档
人工智能·yolo·目标跟踪·语言模型·自然语言处理·开源
鹿子沐20 小时前
LLamaFactory模型导出量化
人工智能·语言模型