【Pytorch之一】--torch.stack()方法详解

torch.stack方法详解


pytorch官网注释

Parameters

tensors:张量序列,也就是要进行stack操作的对象们,可以有很多个张量。

dim:按照dim的方式对这些张量进行stack操作,也就是你要按照哪种堆叠方式对张量进行堆叠。dim的取值范围为闭区间[0,输入Tensor的维数]

return

堆叠后的张量

二、例子

2.1 一维tensor进行stack操作

python 复制代码
import torch as t

x = t.tensor([1, 2, 3, 4])
y = t.tensor([5, 6, 7, 8])

print(x.shape)
print(y.shape)

z1 = t.stack((x, y), dim=0)
print(z1)
print(z1.shape)

z2 = t.stack((x, y), dim=1)
print(z2)
print(z2.shape)
python 复制代码
torch.Size([4])
torch.Size([4])
tensor([[1, 2, 3, 4],
        [5, 6, 7, 8]])
torch.Size([2, 4])
tensor([[1, 5],
        [2, 6],
        [3, 7],
        [4, 8]])
torch.Size([4, 2])

2.2 2个二维tensor进行stack操作

python 复制代码
 import torch as t
 x = t.tensor([[1,2,3],[4,5,6]])
 y = t.tensor([[7,8,9],[10,11,12]])
 print(x.shape)
 print(y.shape)

 z1 = t.stack((x,y), dim=0)
 print(z1)
 print(z1.shape)

 z2 = t.stack((x,y), dim=1)
 print(z2)
 print(z2.shape)

 z3 = t.stack((x,y), dim=2)
 print(z3)
 print(z3.shape)
python 复制代码
torch.Size([2, 3])
torch.Size([2, 3])
tensor([[[ 1,  2,  3],
         [ 4,  5,  6]],

        [[ 7,  8,  9],
         [10, 11, 12]]])
torch.Size([2, 2, 3])
tensor([[[ 1,  2,  3],
         [ 7,  8,  9]],

        [[ 4,  5,  6],
         [10, 11, 12]]])
torch.Size([2, 2, 3])
tensor([[[ 1,  7],
         [ 2,  8],
         [ 3,  9]],

        [[ 4, 10],
         [ 5, 11],
         [ 6, 12]]])
torch.Size([2, 3, 2])

2.3 多个二维tensor进行stack操作

python 复制代码
import torch

x = torch.tensor([[1,2,3],[4,5,6]])
y = torch.tensor([[7,8,9],[10,11,12]])
z = torch.tensor([[13,14,15],[16,17,18]])
print(x.shape)
print(y.shape)
print(z.shape)

r1 = torch.stack((x,y,z),dim=0)
print(r1)
print(r1.shape)

r2 = torch.stack((x,y,z),dim=1)
print(r2)
print(r2.shape)

r3 = torch.stack((x,y,z),dim=2)
print(r3)
print(r3.shape)
python 复制代码
torch.Size([2, 3])
torch.Size([2, 3])
torch.Size([2, 3])
tensor([[[ 1,  2,  3],
         [ 4,  5,  6]],

        [[ 7,  8,  9],
         [10, 11, 12]],

        [[13, 14, 15],
         [16, 17, 18]]])
torch.Size([3, 2, 3])
tensor([[[ 1,  2,  3],
         [ 7,  8,  9],
         [13, 14, 15]],

        [[ 4,  5,  6],
         [10, 11, 12],
         [16, 17, 18]]])
torch.Size([2, 3, 3])
tensor([[[ 1,  7, 13],
         [ 2,  8, 14],
         [ 3,  9, 15]],

        [[ 4, 10, 16],
         [ 5, 11, 17],
         [ 6, 12, 18]]])
torch.Size([2, 3, 3])

2.4 2个三维tensor进行stack操作

python 复制代码
import torch

x= torch.tensor([[[1,2,3],[4,5,6]],
                  [[2,3,4],[5,6,7]]])
y = torch.tensor([[[7,8,9],[10,11,12]],
                  [[8,9,10],[11,12,13]]])
print(x.shape)
print(y.shape)
z1 = torch.stack((x,y),dim=0)
print(z1)
print(z1.shape)
z2 = torch.stack((x,y),dim=1)
print(z2)
print(z2.shape)
z3 = torch.stack((x,y),dim=2)
print(z3)
print(z3.shape)
z4 = torch.stack((x,y),dim=3)
print(z4)
print(z4.shape)
python 复制代码
torch.Size([2, 2, 3])
torch.Size([2, 2, 3])
tensor([[[[ 1,  2,  3],
          [ 4,  5,  6]],

         [[ 2,  3,  4],
          [ 5,  6,  7]]],


        [[[ 7,  8,  9],
          [10, 11, 12]],

         [[ 8,  9, 10],
          [11, 12, 13]]]])
torch.Size([2, 2, 2, 3])
tensor([[[[ 1,  2,  3],
          [ 4,  5,  6]],

         [[ 7,  8,  9],
          [10, 11, 12]]],


        [[[ 2,  3,  4],
          [ 5,  6,  7]],

         [[ 8,  9, 10],
          [11, 12, 13]]]])
torch.Size([2, 2, 2, 3])
tensor([[[[ 1,  2,  3],
          [ 7,  8,  9]],

         [[ 4,  5,  6],
          [10, 11, 12]]],


        [[[ 2,  3,  4],
          [ 8,  9, 10]],

         [[ 5,  6,  7],
          [11, 12, 13]]]])
torch.Size([2, 2, 2, 3])
tensor([[[[ 1,  7],
          [ 2,  8],
          [ 3,  9]],

         [[ 4, 10],
          [ 5, 11],
          [ 6, 12]]],


        [[[ 2,  8],
          [ 3,  9],
          [ 4, 10]],

         [[ 5, 11],
          [ 6, 12],
          [ 7, 13]]]])
torch.Size([2, 2, 3, 2])

参考文献

1\] [PyTorch基础(18)-- torch.stack()方法](https://blog.csdn.net/dongjinkun/article/details/132590205?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522b68e47cf70af441975d1e2806282d406%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=b68e47cf70af441975d1e2806282d406&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~top_positive~default-1-132590205-null-null.nonecase&utm_term=torch.stack&spm=1018.2226.3001.4450) \[2\][pytorch官网注释](https://pytorch.org/docs/2.5/generated/torch.stack.html)

相关推荐
Caven774 小时前
【pytorch】reshape的使用
pytorch·python
无规则ai4 小时前
动手学深度学习(pytorch版):第四章节—多层感知机(5)权重衰减
人工智能·pytorch·python·深度学习
雷达学弱狗7 小时前
backward怎么计算的是torch.tensor(2.0, requires_grad=True)变量的梯度
人工智能·pytorch·深度学习
抠头专注python环境配置16 小时前
Pytorch GPU版本安装保姆级教程
pytorch·python·深度学习·conda
爱分享的飘哥1 天前
第七十章:告别“手写循环”噩梦!Trainer结构搭建:PyTorch Lightning让你“一键炼丹”!
人工智能·pytorch·分布式训练·lightning·accelerate·训练框架·trainer
盛世隐者1 天前
【深度学习】pytorch深度学习框架的环境配置
人工智能·pytorch·深度学习
EthanLifeGreat2 天前
ParallelWaveGAN-KaldiFree:纯Pytorch的PWG
人工智能·pytorch·深度学习·音频·语音识别
fantasy_arch2 天前
pytorch例子计算两张图相似度
人工智能·pytorch·python
天下弈星~2 天前
GANs生成对抗网络生成手写数字的Pytorch实现
人工智能·pytorch·深度学习·神经网络·生成对抗网络·gans
盼小辉丶3 天前
PyTorch生成式人工智能——使用MusicGen生成音乐
pytorch·python·深度学习·生成模型