青少年编程与数学 02-016 Python数据结构与算法 30课题、数据压缩算法

青少年编程与数学 02-016 Python数据结构与算法 30课题、数据压缩算法

  • 一、无损压缩算法
    • [1. Huffman编码](#1. Huffman编码)
    • [2. Lempel-Ziv-Welch (LZW) 编码](#2. Lempel-Ziv-Welch (LZW) 编码)
    • [3. Run-Length Encoding (RLE)](#3. Run-Length Encoding (RLE))
  • 二、有损压缩算法
    • [1. JPEG压缩(有损)](#1. JPEG压缩(有损))
    • [2. DEFLATE(ZIP压缩)](#2. DEFLATE(ZIP压缩))
    • [3. Brotli](#3. Brotli)
    • [4. LZMA](#4. LZMA)
    • [5. Zstandard (Zstd)](#5. Zstandard (Zstd))
  • 总结

课题摘要:

介绍一些常见的数据压缩算法,并提供更详细的Python代码实现。


一、无损压缩算法

1. Huffman编码

Huffman编码是一种基于字符频率的编码方法,通过构建一棵Huffman树来生成每个字符的唯一编码。

详细代码示例(Python)

python 复制代码
import heapq
from collections import defaultdict, Counter

class Node:
    def __init__(self, char, freq):
        self.char = char
        self.freq = freq
        self.left = None
        self.right = None

    def __lt__(self, other):
        return self.freq < other.freq

def build_huffman_tree(frequency):
    heap = [Node(char, freq) for char, freq in frequency.items()]
    heapq.heapify(heap)
    
    while len(heap) > 1:
        left = heapq.heappop(heap)
        right = heapq.heappop(heap)
        merged = Node(None, left.freq + right.freq)
        merged.left = left
        merged.right = right
        heapq.heappush(heap, merged)
    
    return heap[0]

def generate_codes(node, prefix="", code_dict=None):
    if code_dict is None:
        code_dict = {}
    if node is not None:
        if node.char is not None:
            code_dict[node.char] = prefix
        generate_codes(node.left, prefix + "0", code_dict)
        generate_codes(node.right, prefix + "1", code_dict)
    return code_dict

def huffman_encode(s):
    frequency = Counter(s)
    huffman_tree = build_huffman_tree(frequency)
    huffman_codes = generate_codes(huffman_tree)
    encoded_string = ''.join(huffman_codes[char] for char in s)
    return encoded_string, huffman_codes

def huffman_decode(encoded_string, huffman_codes):
    reverse_dict = {code: char for char, code in huffman_codes.items()}
    current_code = ""
    decoded_string = ""
    for bit in encoded_string:
        current_code += bit
        if current_code in reverse_dict:
            decoded_string += reverse_dict[current_code]
            current_code = ""
    return decoded_string

# 示例
s = "this is an example for huffman encoding"
encoded_string, huffman_codes = huffman_encode(s)
print("Encoded string:", encoded_string)
print("Huffman dictionary:", huffman_codes)
decoded_string = huffman_decode(encoded_string, huffman_codes)
print("Decoded string:", decoded_string)

2. Lempel-Ziv-Welch (LZW) 编码

LZW编码是一种基于字典的压缩算法,通过动态构建字典来编码重复的字符串。

详细代码示例(Python)

python 复制代码
def lzw_encode(s):
    dictionary = {chr(i): i for i in range(256)}
    w = ""
    result = []
    for c in s:
        wc = w + c
        if wc in dictionary:
            w = wc
        else:
            result.append(dictionary[w])
            dictionary[wc] = len(dictionary)
            w = c
    if w:
        result.append(dictionary[w])
    return result

def lzw_decode(encoded):
    dictionary = {i: chr(i) for i in range(256)}
    w = chr(encoded.pop(0))
    result = [w]
    for k in encoded:
        if k in dictionary:
            entry = dictionary[k]
        elif k == len(dictionary):
            entry = w + w[0]
        result.append(entry)
        dictionary[len(dictionary)] = w + entry[0]
        w = entry
    return ''.join(result)

# 示例
s = "TOBEORNOTTOBEORTOBEORNOT"
encoded = lzw_encode(s)
print("Encoded:", encoded)
decoded = lzw_decode(encoded)
print("Decoded:", decoded)

3. Run-Length Encoding (RLE)

RLE是一种简单的无损压缩算法,通过将连续重复的字符替换为字符和重复次数的组合。

详细代码示例(Python)

python 复制代码
def rle_encode(s):
    if not s:
        return ""
    
    result = []
    prev_char = s[0]
    count = 1
    
    for char in s[1:]:
        if char == prev_char:
            count += 1
        else:
            result.append((prev_char, count))
            prev_char = char
            count = 1
    result.append((prev_char, count))
    
    return ''.join([f"{char}{count}" for char, count in result])

def rle_decode(encoded):
    result = []
    i = 0
    while i < len(encoded):
        char = encoded[i]
        count = int(encoded[i+1])
        result.append(char * count)
        i += 2
    return ''.join(result)

# 示例
s = "AAAABBBCCDAA"
encoded = rle_encode(s)
print("Encoded:", encoded)
decoded = rle_decode(encoded)
print("Decoded:", decoded)

二、有损压缩算法

1. JPEG压缩(有损)

JPEG是一种广泛使用的图像压缩标准,通常用于有损压缩。虽然JPEG压缩的实现较为复杂,但可以使用Python的Pillow库来处理JPEG图像。

详细代码示例(Python)

python 复制代码
from PIL import Image

# 压缩图像
def compress_image(input_path, output_path, quality=85):
    image = Image.open(input_path)
    image.save(output_path, "JPEG", quality=quality)

# 示例
compress_image("input.jpg", "output.jpg", quality=50)

2. DEFLATE(ZIP压缩)

DEFLATE是一种结合了LZ77算法和Huffman编码的压缩算法,广泛用于ZIP文件格式。

详细代码示例(Python)

python 复制代码
import zlib

def deflate_compress(data):
    compressed_data = zlib.compress(data.encode())
    return compressed_data

def deflate_decompress(compressed_data):
    decompressed_data = zlib.decompress(compressed_data)
    return decompressed_data.decode()

# 示例
data = "this is an example for deflate compression"
compressed_data = deflate_compress(data)
print("Compressed data:", compressed_data)
decompressed_data = deflate_decompress(compressed_data)
print("Decompressed data:", decompressed_data)

3. Brotli

Brotli是一种现代的压缩算法,结合了多种压缩技术,提供比DEFLATE更好的压缩率。

详细代码示例(Python)

python 复制代码
import brotli

def brotli_compress(data):
    compressed_data = brotli.compress(data.encode())
    return compressed_data

def brotli_decompress(compressed_data):
    decompressed_data = brotli.decompress(compressed_data)
    return decompressed_data.decode()

# 示例
data = "this is an example for brotli compression"
compressed_data = brotli_compress(data)
print("Compressed data:", compressed_data)
decompressed_data = brotli_decompress(compressed_data)
print("Decompressed data:", decompressed_data)

4. LZMA

LZMA是一种高效的压缩算法,广泛用于7z文件格式。

详细代码示例(Python)

python 复制代码
import lzma

def lzma_compress(data):
    compressed_data = lzma.compress(data.encode())
    return compressed_data

def lzma_decompress(compressed_data):
    decompressed_data = lzma.decompress(compressed_data)
    return decompressed_data.decode()

# 示例
data = "this is an example for lzma compression"
compressed_data = lzma_compress(data)
print("Compressed data:", compressed_data)
decompressed_data = lzma_decompress(compressed_data)
print("Decompressed data:", decompressed_data)

5. Zstandard (Zstd)

Zstd是一种现代的压缩算法,结合了高压缩率和快速解压缩的特点。

详细代码示例(Python)

python 复制代码
import zstandard

def zstd_compress(data):
    compressed_data = zstandard.compress(data.encode())
    return compressed_data

def zstd_decompress(compressed_data):
    decompressed_data = zstandard.decompress(compressed_data)
    return decompressed_data.decode()

# 示例
data = "this is an example for zstd compression"
compressed_data = zstd_compress(data)
print("Compressed data:", compressed_data)
decompressed_data = zstd_decompress(compressed_data)
print("Decompressed data:", decompressed_data)

总结

这些数据压缩算法在不同的场景下具有各自的优势和适用性。无损压缩算法如Huffman编码、LZW编码和RLE适用于需要完全恢复原始数据的场景,而有损压缩算法如JPEG压缩则适用于对数据质量要求不高的场景。根据具体需求选择合适的压缩算法可以有效节省存储空间和传输带宽。

相关推荐
网络技术 notebook5 分钟前
java输出、输入语句
java·开发语言
studyer_domi23 分钟前
Matlab 汽车行驶速度PID控制系统仿真
开发语言·matlab·汽车
CodeJourney.29 分钟前
DeepSeek与ECharts融合助力复杂图表高效制作
数据库·人工智能·算法·excel
傻啦嘿哟37 分钟前
Python与图像处理:从基础操作到智能应用的全面解析
开发语言·图像处理·python
christine-rr41 分钟前
【25软考网工】第二章(8)差错控制、奇偶校验、CRC、海明码
网络·算法·网络工程师·软考·考试
神仙别闹1 小时前
基于C++(MFC)实现的文件管理系统
开发语言·c++·mfc
CHQIUU1 小时前
PDF.js 生态中如何处理“添加注释\添加批注”以及 annotations.contents 属性
开发语言·javascript·pdf
想成为配环境大佬1 小时前
LeetCode 打家劫舍+删除并获得点数
算法·leetcode·动态规划
海洋与大气科学1 小时前
[matlab]南海地形眩晕图代码
开发语言·matlab