【pytorch】torch.nn.Unfold操作

说明

一个代码里涉及到了unfold的操作,看了半天官网都没整明白维度怎么变化的,参考这个链接搞明白了:

https://blog.csdn.net/ViatorSun/article/details/119940759

https://zhuanlan.zhihu.com/p/361140988

维度计算

输入( N, C, H, W)

输出(N,C×∏(kernel_size),L)

L 是通过卷积核 滑动裁剪 后,得到的区块的数量。

C×∏(kernel_size)是怎么来的?

从第一个参考链接的图可以看到,就是窗口滑动的时候,把窗口同一个位置的值放在了一个通道,所以窗口有多少个像素,就变成了多少个通道。

用参考博客的代码做一个示例:

python 复制代码
inputs = torch.randn(1, 2, 4, 4)
print(inputs.size())
print(inputs)
unfold  = torch.nn.Unfold(kernel_size=(2, 2), stride=2)
patches = unfold(inputs)
print(patches.size())
print(patches)

输出结果

python 复制代码
torch.Size([1, 2, 4, 4])
tensor([[[[ 0.4448, -1.8525, -1.8243, -1.0243],
          [ 0.0224, -1.2402, -0.7154, -1.2538],
          [-0.6515, -0.6022,  0.2263, -1.6286],
          [ 0.2067,  0.8257, -1.9318,  1.0372]],

         [[ 2.4799, -0.5248, -0.3170,  1.5934],
          [-0.3643,  1.1624, -1.5762, -0.1827],
          [-0.0553,  0.1629, -1.3280, -0.8468],
          [ 0.0671,  1.6328,  1.1706,  1.7891]]]])
torch.Size([1, 8, 4])
tensor([[[ 0.4448, -1.8243, -0.6515,  0.2263],
         [-1.8525, -1.0243, -0.6022, -1.6286],
         [ 0.0224, -0.7154,  0.2067, -1.9318],
         [-1.2402, -1.2538,  0.8257,  1.0372],
         [ 2.4799, -0.3170, -0.0553, -1.3280],
         [-0.5248,  1.5934,  0.1629, -0.8468],
         [-0.3643, -1.5762,  0.0671,  1.1706],
         [ 1.1624, -0.1827,  1.6328,  1.7891]]])

用两个窗口的情况来举例,每个位置对应的结果情况如下:

相关推荐
陈佬昔没带相机2 分钟前
[译]AI 是资深开发者的黄金时代
人工智能·程序员
Lilith的AI学习日记13 分钟前
n8n 中文系列教程_04.半开放节点深度解析:Code与HTTP Request高阶用法指南
大数据·人工智能·aigc·n8n
带娃的IT创业者22 分钟前
《AI大模型应知应会100篇》第22篇:系统提示词(System Prompt)设计与优化
人工智能·prompt
绝顶大聪明27 分钟前
【图像轮廓特征查找】图像处理(OpenCV) -part8
图像处理·人工智能·opencv
liruiqiang0527 分钟前
神经网络优化 - 小批量梯度下降之批量大小的选择
人工智能·深度学习·神经网络·机器学习·梯度下降
朴拙数科28 分钟前
Stable Diffusion秋叶整合包V4独立版Python本地API连接指南
开发语言·python·stable diffusion
AI大模型顾潇28 分钟前
[特殊字符] Prompt如何驱动大模型对本地文件实现自主变更:Cline技术深度解析
前端·人工智能·llm·微调·prompt·编程·ai大模型
Blossom.11836 分钟前
量子计算与经典计算融合:开启计算新时代
人工智能·深度学习·opencv·物联网·生活·边缘计算·量子计算
AI技术学长1 小时前
深度学习-python猫狗识别tensorflow2.0
人工智能·深度学习·计算机视觉·图像识别·计算机技术·tensorflow2·猫狗识别
6confim1 小时前
掌握 Cursor:AI 编程助手的高效使用技巧
前端·人工智能·后端