【NLP 68、R-BERT】

为什么划掉你的名字,为什么不敢与你对视

------ 25.4.21

一、R-BERT:基于BERT的关系抽取模型

R-BERT(Relation BERT)是一种用于关系抽取(Relation Extraction)任务的模型,它结合了预训练语言模型 BERT(Bidirectional Encoder Representations from Transformers)的强大语言理解能力,在关系抽取领域取得了较好的效果。

输入一段文本,在两个特殊的实体前后加上两对不同的token,用token强调不同的实体

1.模型结构与设计

Ⅰ、核心思想

在BERT基础上显式标记实体位置,结合句子全局信息和实体局部信息进行关系分类。

Ⅱ、输入设计

① 实体标记

在实体前后插入特殊符号(如 "实体1" 和 "#实体2#"),帮助BERT定位实体位置。

② 输出特征

提取BERT输出的三部分向量------[CLS]句子向量、实体1的平均向量、实体2的平均向量。

Ⅲ、分类模块

① 特征融合

将三个向量分别通过Dropout、Tanh激活和全连接层,拼接后输入分类器。

② 共享权重

实体1和实体2的特征处理层共享参数,减少模型复杂度。


2.计算方式与训练策略

Ⅰ、实体向量计算

对实体对应的隐藏状态进行平均池化,生成实体表征。

Ⅱ、损失函数

多类交叉熵损失,适用于关系分类任务(如SemEval-2010 Task 8数据集中的9类关系)。

Ⅲ、关键实验结论

移除实体标记符会使F1值下降1.27%,仅使用[CLS]向量则下降1.26%,证明显式标记实体的重要性


3.应用场景

Ⅰ、人物关系分类

例如识别"亲戚""上下级"等社会关系。

Ⅱ、医学文本分析

提取疾病与症状之间的关联。

Ⅲ、事件抽取

识别新闻中的实体间因果关系。


4.关键技术优势

Ⅰ、实体感知

通过特殊符号和向量融合增强模型对实体的关注。

Ⅱ、高效微调

基于预训练BERT快速适配关系分类任务,减少数据需求。

Ⅲ、高准确率

在SemEval-2010 Task 8数据集上F1值达89.25%,接近当时SOTA水平。


二、模型对比与总结

维度 KG-BERT R-BERT
核心任务 知识图谱补全(三元组分类、链接预测) 关系抽取(实体间语义关系分类)
输入设计 三元组序列化,融合实体描述文本 显式标记实体位置,提取实体向量
关键技术 BERT+知识图谱融合、负样本生成 实体标记符、多特征融合
应用领域 问答系统、推荐系统、语义搜索 社交网络分析、医学文本挖掘、事件抽取
性能指标 在WN11、FB15K等数据集达到SOTA SemEval-2010 Task 8的F1值89.25%

三、代码示例

python 复制代码
import torch
from transformers import BertTokenizer, BertModel

# 加载预训练的BERT模型和分词器,修改为bert-base-chinese
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
bert_model = BertModel.from_pretrained('bert-base-chinese')

# 示例输入
text = "苹果公司是一家科技公司,史蒂夫·乔布斯是其创始人。"
head_entity = "苹果公司"
tail_entity = "史蒂夫·乔布斯"

# 添加实体标记
text_with_entities = text.replace(head_entity, f"<e1>{head_entity}</e1>").replace(tail_entity, f"<e2>{tail_entity}</e2>")

# 分词
inputs = tokenizer(text_with_entities, return_tensors='pt')

# 通过BERT模型进行编码
outputs = bert_model(**inputs)

# 提取实体和上下文表示
e1_start = inputs['input_ids'][0].tolist().index(tokenizer.convert_tokens_to_ids('<e1>')) + 1
e1_end = inputs['input_ids'][0].tolist().index(tokenizer.convert_tokens_to_ids('</e1>'))
e2_start = inputs['input_ids'][0].tolist().index(tokenizer.convert_tokens_to_ids('<e2>')) + 1
e2_end = inputs['input_ids'][0].tolist().index(tokenizer.convert_tokens_to_ids('</e2>'))

e1_representation = torch.mean(outputs.last_hidden_state[0, e1_start:e1_end, :], dim=0)
e2_representation = torch.mean(outputs.last_hidden_state[0, e2_start:e2_end, :], dim=0)
context_representation = outputs.last_hidden_state[0, 0, :]  # [CLS]标记的表示

# 拼接表示
combined_representation = torch.cat([e1_representation, e2_representation, context_representation], dim=0)

# 假设这里有一个全连接层进行关系分类
num_relations = 3  # 假设有3种关系
classification_layer = torch.nn.Linear(combined_representation.size(0), num_relations)
logits = classification_layer(combined_representation)
probs = torch.softmax(logits, dim=0)

# 预测的关系类别
predicted_relation = torch.argmax(probs).item()

print(f"预测的关系类别: {predicted_relation}")
    
相关推荐
Coder_Boy_26 分钟前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱2 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º4 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee6 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º7 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys7 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56787 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子7 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能7 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144878 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能