【NLP 68、R-BERT】

为什么划掉你的名字,为什么不敢与你对视

------ 25.4.21

一、R-BERT:基于BERT的关系抽取模型

R-BERT(Relation BERT)是一种用于关系抽取(Relation Extraction)任务的模型,它结合了预训练语言模型 BERT(Bidirectional Encoder Representations from Transformers)的强大语言理解能力,在关系抽取领域取得了较好的效果。

输入一段文本,在两个特殊的实体前后加上两对不同的token,用token强调不同的实体

1.模型结构与设计

Ⅰ、核心思想

在BERT基础上显式标记实体位置,结合句子全局信息和实体局部信息进行关系分类。

Ⅱ、输入设计

① 实体标记

在实体前后插入特殊符号(如 "实体1" 和 "#实体2#"),帮助BERT定位实体位置。

② 输出特征

提取BERT输出的三部分向量------[CLS]句子向量、实体1的平均向量、实体2的平均向量。

Ⅲ、分类模块

① 特征融合

将三个向量分别通过Dropout、Tanh激活和全连接层,拼接后输入分类器。

② 共享权重

实体1和实体2的特征处理层共享参数,减少模型复杂度。


2.计算方式与训练策略

Ⅰ、实体向量计算

对实体对应的隐藏状态进行平均池化,生成实体表征。

Ⅱ、损失函数

多类交叉熵损失,适用于关系分类任务(如SemEval-2010 Task 8数据集中的9类关系)。

Ⅲ、关键实验结论

移除实体标记符会使F1值下降1.27%,仅使用[CLS]向量则下降1.26%,证明显式标记实体的重要性


3.应用场景

Ⅰ、人物关系分类

例如识别"亲戚""上下级"等社会关系。

Ⅱ、医学文本分析

提取疾病与症状之间的关联。

Ⅲ、事件抽取

识别新闻中的实体间因果关系。


4.关键技术优势

Ⅰ、实体感知

通过特殊符号和向量融合增强模型对实体的关注。

Ⅱ、高效微调

基于预训练BERT快速适配关系分类任务,减少数据需求。

Ⅲ、高准确率

在SemEval-2010 Task 8数据集上F1值达89.25%,接近当时SOTA水平。


二、模型对比与总结

维度 KG-BERT R-BERT
核心任务 知识图谱补全(三元组分类、链接预测) 关系抽取(实体间语义关系分类)
输入设计 三元组序列化,融合实体描述文本 显式标记实体位置,提取实体向量
关键技术 BERT+知识图谱融合、负样本生成 实体标记符、多特征融合
应用领域 问答系统、推荐系统、语义搜索 社交网络分析、医学文本挖掘、事件抽取
性能指标 在WN11、FB15K等数据集达到SOTA SemEval-2010 Task 8的F1值89.25%

三、代码示例

python 复制代码
import torch
from transformers import BertTokenizer, BertModel

# 加载预训练的BERT模型和分词器,修改为bert-base-chinese
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
bert_model = BertModel.from_pretrained('bert-base-chinese')

# 示例输入
text = "苹果公司是一家科技公司,史蒂夫·乔布斯是其创始人。"
head_entity = "苹果公司"
tail_entity = "史蒂夫·乔布斯"

# 添加实体标记
text_with_entities = text.replace(head_entity, f"<e1>{head_entity}</e1>").replace(tail_entity, f"<e2>{tail_entity}</e2>")

# 分词
inputs = tokenizer(text_with_entities, return_tensors='pt')

# 通过BERT模型进行编码
outputs = bert_model(**inputs)

# 提取实体和上下文表示
e1_start = inputs['input_ids'][0].tolist().index(tokenizer.convert_tokens_to_ids('<e1>')) + 1
e1_end = inputs['input_ids'][0].tolist().index(tokenizer.convert_tokens_to_ids('</e1>'))
e2_start = inputs['input_ids'][0].tolist().index(tokenizer.convert_tokens_to_ids('<e2>')) + 1
e2_end = inputs['input_ids'][0].tolist().index(tokenizer.convert_tokens_to_ids('</e2>'))

e1_representation = torch.mean(outputs.last_hidden_state[0, e1_start:e1_end, :], dim=0)
e2_representation = torch.mean(outputs.last_hidden_state[0, e2_start:e2_end, :], dim=0)
context_representation = outputs.last_hidden_state[0, 0, :]  # [CLS]标记的表示

# 拼接表示
combined_representation = torch.cat([e1_representation, e2_representation, context_representation], dim=0)

# 假设这里有一个全连接层进行关系分类
num_relations = 3  # 假设有3种关系
classification_layer = torch.nn.Linear(combined_representation.size(0), num_relations)
logits = classification_layer(combined_representation)
probs = torch.softmax(logits, dim=0)

# 预测的关系类别
predicted_relation = torch.argmax(probs).item()

print(f"预测的关系类别: {predicted_relation}")
    
相关推荐
cooldream2009几秒前
「源力觉醒 创作者计划」_基于 PaddlePaddle 部署 ERNIE-4.5-0.3B 轻量级大模型实战指南
人工智能·paddlepaddle·文心大模型
亚里随笔19 分钟前
L0:让大模型成为通用智能体的强化学习新范式
人工智能·llm·大语言模型·rlhf
白杆杆红伞伞25 分钟前
T01_神经网络
人工智能·深度学习·神经网络
槑槑紫1 小时前
深度学习pytorch整体流程
人工智能·pytorch·深度学习
盼小辉丶1 小时前
TensorFlow深度学习实战——去噪自编码器详解与实现
人工智能·深度学习·tensorflow
胖达不服输1 小时前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
吴佳浩2 小时前
Python入门指南-AI模型相似性检测方法:技术原理与实现
人工智能·python·llm
kebijuelun2 小时前
百度文心 4.5 大模型详解:ERNIE 4.5 Technical Report
人工智能·深度学习·百度·语言模型·自然语言处理·aigc
算家计算2 小时前
ComfyUI-v0.3.43本地部署教程:新增 Omnigen 2 支持,复杂图像任务一步到位!
人工智能·开源
新智元2 小时前
毕业 7 年,身价破亿!清北 AI 天团血洗硅谷,奥特曼被逼分天价股份
人工智能·openai