深度学习优化器和调度器的选择和推荐


一、常用优化器对比

1. 随机梯度下降(SGD)
  • 原理:每次迭代使用小批量数据计算梯度并更新参数。
  • 优点:实现简单,适合大规模数据集。
  • 缺点:收敛速度慢,容易陷入局部最优或鞍点。
  • 适用场景:简单凸优化问题或需要精细调参的任务。
2. 带动量的SGD(SGDM)
  • 原理:引入动量项,累积历史梯度以加速收敛并减少震荡。
  • 优点:收敛更快,训练更稳定。
  • 缺点:需调整动量超参数(通常设为0.9)。
  • 适用场景:计算机视觉(CV)任务,如CNN训练。
3. Adagrad
  • 原理:自适应调整学习率,累加历史梯度平方。
  • 优点:适合稀疏数据(如NLP任务)。
  • 缺点:学习率单调衰减,可能导致训练后期停滞。
  • 适用场景:稀疏数据或特征重要性差异较大的任务。
4. RMSProp
  • 原理:改进Adagrad,使用梯度平方的指数移动平均。
  • 优点:缓解学习率过快衰减问题。
  • 缺点:对初始学习率敏感。
  • 适用场景:非平稳目标问题,如RNN训练。
5. Adam
  • 原理:结合动量(一阶矩)和RMSProp(二阶矩),自适应调整学习率。
  • 优点:收敛快,适合大多数任务。
  • 缺点:可能泛化性能稍差,对初始学习率敏感。
  • 适用场景:NLP、强化学习、GAN等复杂任务。
6. AdamW
  • 原理:解耦权重衰减与梯度更新,改进Adam。
  • 优点:提升泛化能力,适合Transformer架构。
  • 适用场景:大规模预训练模型(如BERT)。

二、常用学习率调度器对比

1. 指数衰减(Exponential Decay)
  • 原理:学习率按指数函数衰减。
  • 优点:平滑减小学习率,适合稳定收敛。
  • 适用场景:训练过程较长,需平缓调整学习率的任务。
2. 步长衰减(Step Decay)
  • 原理:每隔固定步长按比例降低学习率。
  • 优点:简单直观,适合分阶段训练。
  • 适用场景:明确分阶段的训练任务(如先粗调后微调)。
3. 余弦退火(Cosine Annealing)
  • 原理:学习率按余弦函数周期性变化。
  • 优点:避免局部最优,适合复杂模型。
  • 适用场景:深层神经网络或需要周期性调整的任务。
4. 多项式衰减与预热(Polynomial Decay with Warm-up)
  • 原理:训练初期逐步增加学习率(预热),后期多项式衰减。
  • 优点:防止初期震荡,适合大模型(如BERT)。
  • 适用场景:Transformer等复杂模型训练。
5. 动态调整(ReduceLROnPlateau)
  • 原理:监控验证集损失,性能未提升时降低学习率。
  • 优点:自适应调整,避免浪费计算资源。
  • 适用场景:验证集性能波动较大的任务。

三、优化器与调度器的搭配建议

  1. SGD/SGDM + 步长衰减:适合CV任务,如ResNet训练。
  2. Adam + 余弦退火:适合NLP或复杂模型,如Transformer。
  3. AdamW + 预热调度:适合大规模预训练模型。

相关推荐
love530love几秒前
EPGF 新手教程 21把“环境折磨”从课堂中彻底移除:EPGF 如何重构 AI / Python 教学环境?
人工智能·windows·python·重构·架构·epgf
ldccorpora1 分钟前
Chinese News Translation Text Part 1数据集介绍,官网编号LDC2005T06
数据结构·人工智能·python·算法·语音识别
大学生毕业题目1 分钟前
毕业项目推荐:99-基于yolov8/yolov5/yolo11的肾结石检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·肾结石检测
退休钓鱼选手2 分钟前
BehaviorTree行为树 【调试】 5
人工智能·自动驾驶
stephen one18 分钟前
2026 AI深度伪造危机:实测 Midjourney v7 与 Flux 2 Max 识别,谁才是 AI 检测的天花板?
人工智能·ai作画·stable diffusion·aigc·midjourney
卡奥斯开源社区官方19 分钟前
Claude 4.5技术深析:AI编码重构软件工程的底层逻辑与实践路径
人工智能·重构·软件工程
爱学英语的程序员29 分钟前
让AI 帮我做了个个人博客(附提示词!)
人工智能·git·vue·github·node·个人博客
lixzest37 分钟前
Transformer、PyTorch与人工智能大模型的关系
人工智能
其美杰布-富贵-李37 分钟前
PyTorch Lightning
人工智能·pytorch·python·training
SiYuanFeng39 分钟前
pytorch常用张量构造词句表和nn.组件速查表
人工智能·pytorch·python