Python数据清洗笔记(上)

一、数据清洗概述

数据清洗是数据分析过程中至关重要的一步,约占整个数据分析过程的60%-80%的时间。主要包括处理缺失值、异常值、重复值、格式不一致等问题。

二、常用工具

主要使用Python的Pandas库进行数据清洗:

import pandas as pd

import numpy as np

三、常见数据问题及处理方法

3.1缺失值处理

(1)创建示例数据

data = {'姓名': ['张三', '李四', '王五', '赵六', None],

'年龄': [25, 30, None, 35, 40],

'工资': [5000, 6000, 5500, None, 7000]}

df = pd.DataFrame(data)

(2) 查看缺失值

print(df.isnull().sum())

(3)处理方法

处理方法1:删除缺失行

df_drop = df.dropna()

print("删除缺失值后的数据:\n", df_drop)

处理方法2:填充缺失值

df_fill = df.fillna({'姓名': '未知', '年龄': df['年龄'].mean(), '工资': df['工资'].median()})

print("填充缺失值后的数据:\n", df_fill)

处理方法3:插值法

df['年龄'] = df['年龄'].interpolate()

print("插值处理后的数据:\n", df)

3.2重复值处理

(1)创建含重复值的数据

data = {'姓名': ['张三', '李四', '张三', '王五', '李四'],

'年龄': [25, 30, 25, 35, 30],

'工资': [5000, 6000, 5000, 5500, 6000]}

df = pd.DataFrame(data)

(2)检查重复值

print("重复值数量:", df.duplicated().sum())

(3)删除完全重复的行

df_drop_dup = df.drop_duplicates()

print("去重后的数据:\n", df_drop_dup)

(4)基于特定列删除重复值

df_drop_dup_name = df.drop_duplicates(subset=['姓名'])

print("基于姓名去重后的数据:\n", df_drop_dup_name)

3.3异常值处理

(1)创建含异常值的数据

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

data = {

'数学': [85, 90, 78, 92, 87, 130, 88, 95, 72, 150],

'物理': [72, 85, 90, 68, 82, 95, 78, 120, 65, 88],

'化学': [88, 92, 85, 78, 95, 102, 82, 78, 115, 90]

}

df = pd.DataFrame(data)

(2)基于3σ原则定义函数

def sigma_rule_outliers(df):

outliers_mask = pd.DataFrame(index=df.index, columns=df.columns)

#创建一个与原始df具有相同索引和列名的空DataFrame,所有单元格值被填充为False

for col in df.columns:

mean = df[col].mean()

std = df[col].std()

lower = mean - 3*std

upper = mean + 3*std

outliers_mask[col] = ~df[col].between(lower, upper)

return outliers_mask

(3)基于箱线图定义函数(IQR方法)

def iqr_rule_outliers(df):

outliers_mask = pd.DataFrame(index=df.index, columns=df.columns)

for col in df.columns:

Q1 = df[col].quantile(0.25)

Q3 = df[col].quantile(0.75)

IQR = Q3 - Q1

lower = Q1 - 1.5*IQR

upper = Q3 + 1.5*IQR

outliers_mask[col] = ~df[col].between(lower, upper)

return outliers_mask

(4)检测并处理异常值

--检测异常值:

sigma_outliers = sigma_rule_outliers(df)

iqr_outliers = iqr_rule_outliers(df)

print("\n3σ原则检测到的异常值位置:")

print(sigma_outliers)

print("\n箱线图(IQR)方法检测到的异常值位置:")

print(iqr_outliers)

--处理异常值(替换为中位数):

def replace_outliers(df, outliers_mask):

df_clean = df.copy( )

for col in df.columns:

median = df[col].median()

df_clean[col] = df_clean[col].mask(outliers_mask[col], median)

return df_clean

使用3σ原则处理

df_sigma_clean = replace_outliers(df, sigma_outliers)

使用IQR方法处理

df_iqr_clean = replace_outliers(df, iqr_outliers)

print("\n3σ原则处理后的数据:")

print(df_sigma_clean)

print("\nIQR方法处理后的数据:")

print(df_iqr_clean)

(5)建议

数据分布接近正态时:优先使用3σ原则

数据分布未知或偏态时:使用IQR方法

重要决策时:两种方法结合使用,人工复核异常值

相关推荐
天天爱吃肉82181 分钟前
新能源汽车热管理核心技术解析:冬季续航提升40%的行业方案
android·python·嵌入式硬件·汽车
ss.li4 分钟前
TripGenie:畅游济南旅行规划助手:个人工作纪实(二十二)
javascript·人工智能·python
l木本I17 分钟前
大模型低秩微调技术 LoRA 深度解析与实践
python·深度学习·自然语言处理·lstm·transformer
哆啦A梦的口袋呀21 分钟前
基于Python学习《Head First设计模式》第七章 适配器和外观模式
python·学习·设计模式
笑鸿的学习笔记21 分钟前
虚幻引擎5-Unreal Engine笔记之SET节点的输出引脚获取设置后的最新变量值
笔记·ue5·虚幻
十月狐狸24 分钟前
Python字符串进化史:从青涩到成熟的蜕变
python
草莓熊Lotso27 分钟前
【数据结构初阶】--算法复杂度的深度解析
c语言·开发语言·数据结构·经验分享·笔记·其他·算法
海的诗篇_43 分钟前
前端开发面试题总结-JavaScript篇(二)
开发语言·前端·javascript·typescript
东京老树根1 小时前
SAP学习笔记 - 开发27 - 前端Fiori开发 Routing and Navigation(路由和导航)
笔记·学习
cccc来财1 小时前
Go中的协程并发和并发panic处理
开发语言·后端·golang