Spark-Streaming

Spark-Streaming概述

Spark Streaming 用于流式数据的处理。Spark Streaming 支持的数据输入源很多,以及和简单的 TCP 套接字等等。数据输入后可以用 Spark 的高度抽象原语进行运算。而结果也能保存在很多地方,如 HDFS,数据库等。

1.DStream的概念

和 Spark 基于 RDD 的概念很相似,Spark Streaming 使用离散化流作为抽象表示,叫作 DStream。

所以简单来将,DStream 就是对 RDD 在实时数据处理场景的一种封装。

Spark-Streaming的特点:易用、容错、易整合到spark体系。

1)易用性:Spark Streaming支持Java、Python、Scala等编程语言,可以像编写离线程序一样编写实时计算的程序

2)容错:Spark Streaming在没有额外代码和配置的情况下,可以恢复丢失的数据。对于实时计算来说,容错性至关重要。

3)易整合:Spark Streaming可以在Spark上运行,并且还允许重复使用相同的代码进行批处理。也就是说,实时处理可以与离线处理相结合,实现交互式的查询操作。

Spark-Streaming架构

Spark-Streaming架构图:

背压机制:

在Spark 1.5 以前版本,用户如果要限制 Receiver 的数据接收速率,可以通过设置静态配制参数"spark.streaming.receiver.maxRate"的值来实现,此举虽然可以通过限制接收速率,来适配当前的处理能力,防止内存溢出,但也会引入其它问题。比如:producer 数据生产高于 maxRate,当前集群处理能力也高于 maxRate,这就会造成资源利用率下降等问题。

为了更好的协调数据接收速率与资源处理能力,1.5 版本开始 Spark Streaming 可以动态控制数据接收速率来适配集群数据处理能力。背压机制(即 Spark Streaming Backpressure): 根据JobScheduler 反馈作业的执行信息来动态调整 Receiver 数据接收率。通过属性"spark.streaming.backpressure.enabled"来控制是否启用 backpressure 机制,默认值为false,即不启用。

DStream实操

案例一:使用 netcat 工具向 9999 端口不断的发送数据,通过 SparkStreaming 读取端口数据并统计不同单词出现的次数

1. 添加依赖

2 代码如下

3 启动netcat发送数据 ,运行代码可以得到不同单词出现的次数

DStream 创建

创建DStream的三种方式:RDD队列、自定义数据源、kafka数据源

方式一:RDD队列

**任务需求:**循环创建几个 RDD,将 RDD 放入队列。通过 SparkStream 创建 Dstream,计算 WordCount

案例演示

运行结果

方式二:自定义数据源

**定义:**自定义数据源需要继承 Receiver,并实现 onStart、onStop 方法来自定义数据源采集。

**任务需求:**自定义数据源,实现监控某个端口号,获取该端口号内容。

案例演示

  1. 自定义数据源
  1. 使用自定义的数据源采集数据

3 往端口传输数据

运行结果

相关推荐
长安城没有风3 小时前
从入门到精通【Redis】Redis 典型应⽤ --- 分布式锁
数据库·redis·分布式
言之。3 小时前
大模型嵌入 vs ES:语义搜索与关键字搜索
大数据·elasticsearch·搜索引擎
SirLancelot14 小时前
StarRocks-基本介绍(一)基本概念、特点、适用场景
大数据·数据库·数据仓库·sql·数据分析·database·数据库架构
阑梦清川4 小时前
es的docker部署和docker相关的可可视化面板工具介绍
大数据·elasticsearch·docker
Mr_LiYYD5 小时前
elasticsearch数据迁移
大数据·elasticsearch·搜索引擎
dalianwawatou6 小时前
GitLab 代码基础操作清单
大数据·elasticsearch·gitlab
Costrict6 小时前
解锁新阵地!CoStrict 现已支持 JetBrains 系列 IDE
大数据·ide·人工智能·深度学习·自然语言处理·ai编程·visual studio
爬山算法6 小时前
Redis(69)Redis分布式锁的优点和缺点是什么?
数据库·redis·分布式
阿里云大数据AI技术6 小时前
云栖实录|阿里云 Milvus:AI 时代的专业级向量数据库
大数据·人工智能·搜索引擎
随心............7 小时前
在开发过程中遇到问题如何解决,以及两个经典问题
hive·hadoop·spark