PySpark实现ABC_manage_channel逻辑

问题描述

我们需要确定"ABC_manage_channel"列的逻辑,该列的值在客户连续在同一渠道下单时更新为当前渠道,否则保留之前的值。具体规则如下:

  • 初始值为第一个订单的渠道
  • 如果客户连续两次在同一渠道下单,则更新为当前渠道
  • 否则保持前一个值不变

数据准备

首先创建orders表并插入测试数据:

sql 复制代码
CREATE OR REPLACE TABLE orders (
    customerid INTEGER,
    channel VARCHAR(20),
    order_date DATE
);

INSERT INTO orders (customerid, channel, order_date) VALUES
(1, 'TMALL', '2024-11-01'),
(1, 'TMALL', '2024-11-02'),
(1, 'TMALL', '2024-11-03'),
(1, 'douyin', '2024-11-25'),
(1, 'JD', '2025-01-13'),
(1, 'JD', '2025-01-14'),
(1, 'douyin', '2025-03-02'),
(1, 'douyin', '2025-03-27'),
(3, 'JD', '2024-04-23'),
(4, 'JD', '2025-02-15'),
(5, 'JD', '2024-08-30'),
(6, 'douyin', '2024-10-05'),
(7, 'JD', '2024-05-29'),
(7, 'douyin', '2024-09-15'),
(7, 'Wholesale', '2024-12-22'),
(7, 'JD', '2025-03-19'),
(8, 'douyin', '2024-08-01'),
(8, 'douyin', '2024-08-07'),
(8, 'douyin', '2024-11-15'),
(9, 'JD', '2025-03-19'),
(10, 'douyin', '2024-07-30'),
(10, 'douyin', '2024-12-27'),
(10, 'douyin', '2025-03-21'),
(10, 'douyin', '2025-03-23');

解决方案

方法一:使用SparkSQL(结合UDF)

python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.types import ArrayType, StringType, StructType, StructField, DateType

# 初始化Spark会话
spark = SparkSession.builder.appName("ABCManageChannel").getOrCreate()

# 创建并插入测试数据
spark.sql("""
CREATE OR REPLACE TABLE orders (
    customerid INTEGER,
    channel VARCHAR(20),
    order_date DATE
) USING parquet;

INSERT INTO orders VALUES
(1, 'TMALL', '2024-11-01'),
(1, 'TMALL', '2024-11-02'),
(1, 'TMALL', '2024-11-03'),
(1, 'douyin', '2024-11-25'),
(1, 'JD', '2025-01-13'),
(1, 'JD', '2025-01-14'),
(1, 'douyin', '2025-03-02'),
(1, 'douyin', '2025-03-27'),
(3, 'JD', '2024-04-23'),
(4, 'JD', '2025-02-15'),
(5, 'JD', '2024-08-30'),
(6, 'douyin', '2024-10-05'),
(7, 'JD', '2024-05-29'),
(7, 'douyin', '2024-09-15'),
(7, 'Wholesale', '2024-12-22'),
(7, 'JD', '2025-03-19'),
(8, 'douyin', '2024-08-01'),
(8, 'douyin', '2024-08-07'),
(8, 'douyin', '2024-11-15'),
(9, 'JD', '2025-03-19'),
(10, 'douyin', '2024-07-30'),
(10, 'douyin', '2024-12-27'),
(10, 'douyin', '2025-03-21'),
(10, 'douyin', '2025-03-23');
""")

# 读取数据并按客户分组排序
orders_df = spark.table("orders")

# 定义UDF处理渠道序列
def calculate_abc(channels):
    abc = []
    prev_channel = None
    current_abc = None
    for idx, c in enumerate(channels):
        if idx == 0:
            current_abc = c
        else:
            if c == prev_channel:
                current_abc = c
            # 否则保持前一个current_abc
        abc.append(current_abc)
        prev_channel = c
    return abc

udf_calculate_abc = F.udf(calculate_abc, ArrayType(StringType()))

# 使用SparkSQL处理
result_sql = spark.sql("""
WITH sorted_orders AS (
    SELECT customerid, channel, order_date,
           ROW_NUMBER() OVER (PARTITION BY customerid ORDER BY order_date) AS rn
    FROM orders
),
grouped AS (
    SELECT customerid, 
           COLLECT_LIST(channel) OVER (PARTITION BY customerid ORDER BY order_date) AS channels,
           COLLECT_LIST(order_date) OVER (PARTITION BY customerid ORDER BY order_date) AS order_dates
    FROM sorted_orders
)
SELECT customerid, order_date, channel, abc
FROM (
    SELECT customerid, 
           EXPLODE(ARRAYS_ZIP(order_dates, channels, abc_list)) AS data
    FROM (
        SELECT customerid, order_dates, channels,
               udf_calculate_abc(channels) AS abc_list
        FROM grouped
    )
)
SELECT customerid, 
       data.order_dates AS order_date,
       data.channels AS channel,
       data.abc_list AS ABC_manage_channel
""")

result_sql.show()

方法二:不使用SparkSQL(使用DataFrame API)

python 复制代码
# 使用DataFrame API处理
window_spec = Window.partitionBy("customerid").orderBy("order_date")

# 收集每个客户的订单渠道并按时间排序
grouped_df = orders_df.withColumn("rn", F.row_number().over(window_spec)) \
    .groupBy("customerid") \
    .agg(F.collect_list(F.struct("order_date", "channel")).alias("orders"))

# 定义UDF处理订单序列
schema = ArrayType(StructType([
    StructField("order_date", DateType()),
    StructField("channel", StringType()),
    StructField("ABC_manage_channel", StringType())
]))

def process_orders(orders):
    abc_list = []
    prev_channel = None
    current_abc = None
    sorted_orders = sorted(orders, key=lambda x: x.order_date)
    for idx, order in enumerate(sorted_orders):
        if idx == 0:
            current_abc = order.channel
        else:
            if order.channel == prev_channel:
                current_abc = order.channel
        abc_list.append((order.order_date, order.channel, current_abc))
        prev_channel = order.channel
    return abc_list

udf_process_orders = F.udf(process_orders, schema)

# 应用UDF并展开结果
result_df = grouped_df.withColumn("processed", udf_process_orders("orders")) \
    .select(F.explode("processed").alias("data")) \
    .select(
        F.col("data.order_date").alias("order_date"),
        F.col("data.channel").alias("channel"),
        F.col("data.ABC_manage_channel").alias("ABC_manage_channel")
    )

result_df.show()

解释

  • 方法一使用SparkSQL结合UDF,通过窗口函数排序并收集渠道数据,使用UDF处理每个客户的订单序列,生成ABC管理渠道列。
  • 方法二使用DataFrame API,通过分组和聚合操作收集订单数据,利用UDF处理每个分组内的订单序列,最后展开结果。
相关推荐
Emma歌小白5 分钟前
JavaScript (JS) 和 Python 语法对比
python
Java手札13 分钟前
Windows下Golang与Nuxt项目宝塔部署指南
开发语言·windows·golang
小生凡一15 分钟前
腾讯二面:TCC分布式事务 | 图解TCC|用Go语言实现一个TCC
开发语言·分布式·golang
minji...20 分钟前
C语言 函数递归
c语言·开发语言·算法
梓羽玩Python28 分钟前
开源AI代理爆火!Suna:3天内新增5.5K+标星,自然对话驱动的自动化神器!
人工智能·python·github
咖啡调调。33 分钟前
模板引擎语法-过滤器
python·django·sqlite
云上空40 分钟前
C#初级知识总结
开发语言·c#
Ankie Wan43 分钟前
notepad++技巧:查找和替换:扩展 or 正则表达式
python·正则表达式·notepad++
带娃的IT创业者43 分钟前
《AI大模型趣味实战》智能Agent和MCP协议的应用实例:搭建一个能阅读DOC文件并实时显示润色改写过程的Python Flask应用
人工智能·python·flask
JavaEdge在掘金1 小时前
启动nginx报错,80 failed (97: Address family not supported by protocol)
python