数据结构(java)二叉树的基本操作

1.二叉树的性质:

1.若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有2*-1(i>0)个结点

2.若规定只有根节点的二叉树的深度为1,则深度为K的二叉树的最大结点数是2都k次方-1

3.对于任何一个二叉树,如果其叶结点个数为 nO,度为2的非叶结点个数为n2,则有n0=n2+1

4.具有n个结点的完全二叉树的深度k为log2(n+1)上取整

5.对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则

的结点有:

。若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号、无双亲结点

。若2i+1<n,左孩子序号:2i+1,否则无左孩子

。若2i+2<n,右孩子序号:2i+2,否则无右孩子


2.二叉树的前,中,后序遍历

前序遍历:

java 复制代码
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

public class BinaryTree {
    static class TreeNode {
        public char val;
        public TreeNode left;//存储左孩子的引用
        public TreeNode right;//存储右孩子的引用

        public TreeNode(char val) {
            this.val = val;
        }
    }

    public TreeNode createTree() {
        TreeNode A = new TreeNode('A');
        TreeNode B = new TreeNode('B');
        TreeNode C = new TreeNode('C');
        TreeNode D = new TreeNode('D');
        TreeNode E = new TreeNode('E');
        TreeNode F = new TreeNode('F');
        TreeNode G = new TreeNode('G');
        TreeNode H = new TreeNode('H');

        A.left = B;
        A.right = C;
        B.left = D;
        B.right = E;
        C.left = F;
        C.right = G;
        E.right = H;
        return A;
    }

    public int i = 0;

    public TreeNode createTree(String str) {
        TreeNode root = null;
        if (str.charAt(i) != '#') {
            root = new TreeNode(str.charAt(i));
            i++;
            root.left = createTree(str);
            root.right = createTree(str);
        } else {
            i++;
        }
        return root;
    }


    // 前序遍历
    public void preOrder(TreeNode root) {
        if (root == null) return;
        System.out.print(root.val + " ");
        preOrder(root.left);
        preOrder(root.right);
    }

    public void preOrderNor(TreeNode root) {
        if (root == null) return;
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;

        while (cur != null || !stack.isEmpty()) {
            while (cur != null) {
                stack.push(cur);
                System.out.print(cur.val + " ");
                cur = cur.left;
            }
            TreeNode top = stack.pop();
            cur = top.right;
        }
    }

中序遍历:

java 复制代码
public void inOrder(TreeNode root) {
        if (root == null) return;
        inOrder(root.left);
        System.out.print(root.val + " ");
        inOrder(root.right);
    }


    public void inOrderNor(TreeNode root) {
        if (root == null) return;
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;

        while (cur != null || !stack.isEmpty()) {
            while (cur != null) {
                stack.push(cur);
                cur = cur.left;
            }
            TreeNode top = stack.pop();
            System.out.print(top.val + " ");

            cur = top.right;
        }
    }

后序遍历:

java 复制代码
public void postOrder(TreeNode root) {
        if (root == null) return;
        postOrder(root.left);
        postOrder(root.right);
        System.out.print(root.val + " ");
    }

    public void postOrderNor(TreeNode root) {
        if (root == null) return;
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;
        TreeNode prev = null;
        while (cur != null || !stack.isEmpty()) {
            while (cur != null) {
                stack.push(cur);
                cur = cur.left;
            }
            TreeNode top = stack.peek();
            if (top.right == null || top.right == prev) {
                System.out.print(top.val + " ");
                stack.pop();
                prev = top;
            } else {
                cur = top.right;
            }

        }

获取叶子节点的个数:

java 复制代码
public static int leafSize;
    public void getLeafNodeCount(TreeNode root) {
        if(root == null) {
            return;
        }

        if(root.left == null && root.right == null) {
            leafSize++;
        }

        getLeafNodeCount(root.left);
        getLeafNodeCount(root.right);
    }

    public int getLeafNodeCount2(TreeNode root) {
       if(root == null) {
           return 0;
       }
        if(root.left == null && root.right == null) {
            return 1;
        }
       return getLeafNodeCount2(root.left) +
               getLeafNodeCount2(root.right);
    }
    public int getKLevelNodeCount(TreeNode root,int k) {
        if(root == null) {
            return 0;
        }
        if(k == 1) {
            return 1;
        }
        return getKLevelNodeCount(root.left,k-1) +
                getKLevelNodeCount(root.right,k-1);
    }
相关推荐
Han.miracle1 小时前
数据结构——二叉树的从前序与中序遍历序列构造二叉树
java·数据结构·学习·算法·leetcode
Le1Yu2 小时前
分布式事务以及Seata(XA、AT模式)
java
寒山李白3 小时前
关于Java项目构建/配置工具方式(Gradle-Groovy、Gradle-Kotlin、Maven)的区别于选择
java·kotlin·gradle·maven
mit6.8243 小时前
前后缀分解
算法
独自破碎E3 小时前
判断链表是否为回文
数据结构·链表
你好,我叫C小白3 小时前
C语言 循环结构(1)
c语言·开发语言·算法·while·do...while
无妄无望3 小时前
docker学习(4)容器的生命周期与资源控制
java·学习·docker
MC丶科4 小时前
【SpringBoot 快速上手实战系列】5 分钟用 Spring Boot 搭建一个用户管理系统(含前后端分离)!新手也能一次跑通!
java·vue.js·spring boot·后端
千码君20164 小时前
React Native:从react的解构看编程众多语言中的解构
java·javascript·python·react native·react.js·解包·解构
夜白宋5 小时前
【word多文档docx合并】
java·word