asammdf 库的信号处理和数据分析:深入挖掘测量数据

内容概要​​:

  • 信号处理的基本操作
  • 数据分析和统计
  • 数据可视化和报告生成

​正文​​:

信号处理的基本操作

asammdf 提供了对信号的基本操作,包括读取、筛选和转换。

读取信号
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    engine_speed = mdf.get('EngineSpeed')
    print(engine_speed)
筛选信号
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    filtered_engine_speed = mdf.get('EngineSpeed', samples_only=True)
    print(filtered_engine_speed)
转换信号
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    converted_engine_speed = mdf.get('EngineSpeed', raw=False)
    print(converted_engine_speed)

数据分析和统计

asammdf 支持对信号数据进行各种统计分析。

基本统计
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    df = mdf.to_dataframe()
    stats = df.describe()
    print(stats)
信号处理
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    # 对信号进行滤波
    filtered_signal = mdf.get('EngineSpeed').filter('lowpass', cutoff=100)
    print(filtered_signal)

数据可视化和报告生成

asammdf 提供了数据可视化的功能,帮助用户生成报告和图表。

数据可视化
复制代码
import matplotlib.pyplot as plt

with asammdf.MDF(name='example.mf4') as mdf:
    engine_speed = mdf.get('EngineSpeed')
    vehicle_speed = mdf.get('VehicleSpeed')
    
    plt.figure(figsize=(10, 5))
    plt.plot(engine_speed.timestamps, engine_speed.samples, label='Engine Speed')
    plt.plot(vehicle_speed.timestamps, vehicle_speed.samples, label='Vehicle Speed')
    plt.xlabel('Time')
    plt.ylabel('Value')
    plt.legend()
    plt.show()
报告生成

可以将数据和分析结果导出为 PDF 或 HTML 报告。

复制代码
import pandas as pd

with asammdf.MDF(name='example.mf4') as mdf:
    df = mdf.to_dataframe()
    report = pd.DataFrame.to_html(df)
    with open('report.html', 'w') as f:
        f.write(report)

通过这些功能,用户可以进行深入的数据分析和报告生成。

相关推荐
拓端研究室7 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
秀儿还能再秀11 小时前
基于Excel的数据分析思维与分析方法
数据分析·excel
大千AI助手14 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
要努力啊啊啊15 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
好开心啊没烦恼15 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
生态遥感监测笔记15 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
涤生大数据18 小时前
Apache Spark 4.0:将大数据分析提升到新的水平
数据分析·spark·apache·数据开发
遇雪长安19 小时前
差分定位技术:原理、分类与应用场景
算法·分类·数据挖掘·rtk·差分定位
可观测性用观测云19 小时前
Pipeline 引用外部数据源最佳实践
数据分析
是Dream呀20 小时前
基于连接感知的实时困倦分类图神经网络
神经网络·分类·数据挖掘