asammdf 库的信号处理和数据分析:深入挖掘测量数据

内容概要​​:

  • 信号处理的基本操作
  • 数据分析和统计
  • 数据可视化和报告生成

​正文​​:

信号处理的基本操作

asammdf 提供了对信号的基本操作,包括读取、筛选和转换。

读取信号
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    engine_speed = mdf.get('EngineSpeed')
    print(engine_speed)
筛选信号
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    filtered_engine_speed = mdf.get('EngineSpeed', samples_only=True)
    print(filtered_engine_speed)
转换信号
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    converted_engine_speed = mdf.get('EngineSpeed', raw=False)
    print(converted_engine_speed)

数据分析和统计

asammdf 支持对信号数据进行各种统计分析。

基本统计
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    df = mdf.to_dataframe()
    stats = df.describe()
    print(stats)
信号处理
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    # 对信号进行滤波
    filtered_signal = mdf.get('EngineSpeed').filter('lowpass', cutoff=100)
    print(filtered_signal)

数据可视化和报告生成

asammdf 提供了数据可视化的功能,帮助用户生成报告和图表。

数据可视化
复制代码
import matplotlib.pyplot as plt

with asammdf.MDF(name='example.mf4') as mdf:
    engine_speed = mdf.get('EngineSpeed')
    vehicle_speed = mdf.get('VehicleSpeed')
    
    plt.figure(figsize=(10, 5))
    plt.plot(engine_speed.timestamps, engine_speed.samples, label='Engine Speed')
    plt.plot(vehicle_speed.timestamps, vehicle_speed.samples, label='Vehicle Speed')
    plt.xlabel('Time')
    plt.ylabel('Value')
    plt.legend()
    plt.show()
报告生成

可以将数据和分析结果导出为 PDF 或 HTML 报告。

复制代码
import pandas as pd

with asammdf.MDF(name='example.mf4') as mdf:
    df = mdf.to_dataframe()
    report = pd.DataFrame.to_html(df)
    with open('report.html', 'w') as f:
        f.write(report)

通过这些功能,用户可以进行深入的数据分析和报告生成。

相关推荐
dajun1811234567 小时前
跨部门工作流泳道图在线绘制工具 PC
大数据·数据库·人工智能·信息可视化·架构·流程图
AC赳赳老秦8 小时前
医疗数据安全处理:DeepSeek实现敏感信息脱敏与结构化提取
大数据·服务器·数据库·人工智能·信息可视化·数据库架构·deepseek
专注数据的痴汉9 小时前
「数据获取」吉林地理基础数据(道路、水系、四级行政边界、地级城市、DEM等)
大数据·人工智能·信息可视化
骆驼爱记录9 小时前
PPT高效技巧:30秒提升制作速度
信息可视化
2501_936146049 小时前
基于YOLO11-C3k2-Faster-CGLU的草莓成熟度检测与分类系统
人工智能·分类·数据挖掘
城数派9 小时前
2019-2025年各区县逐月新房房价数据(Excel/Shp格式)
大数据·数据分析·excel
专注数据的痴汉10 小时前
「数据获取」中国会计年鉴(1996-2024)
大数据·人工智能·信息可视化
橙露10 小时前
从零基础到实战:Python 数据分析三剑客(Pandas+NumPy+Matplotlib)核心应用指南
python·数据分析·pandas
AI_567810 小时前
基于职业发展的Python与Java深度对比分析
java·人工智能·python·信息可视化
YangYang9YangYan13 小时前
2026高职大数据与会计专业学数据分析的技术价值分析
大数据·数据挖掘·数据分析