asammdf 库的信号处理和数据分析:深入挖掘测量数据

内容概要​​:

  • 信号处理的基本操作
  • 数据分析和统计
  • 数据可视化和报告生成

​正文​​:

信号处理的基本操作

asammdf 提供了对信号的基本操作,包括读取、筛选和转换。

读取信号
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    engine_speed = mdf.get('EngineSpeed')
    print(engine_speed)
筛选信号
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    filtered_engine_speed = mdf.get('EngineSpeed', samples_only=True)
    print(filtered_engine_speed)
转换信号
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    converted_engine_speed = mdf.get('EngineSpeed', raw=False)
    print(converted_engine_speed)

数据分析和统计

asammdf 支持对信号数据进行各种统计分析。

基本统计
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    df = mdf.to_dataframe()
    stats = df.describe()
    print(stats)
信号处理
复制代码
with asammdf.MDF(name='example.mf4') as mdf:
    # 对信号进行滤波
    filtered_signal = mdf.get('EngineSpeed').filter('lowpass', cutoff=100)
    print(filtered_signal)

数据可视化和报告生成

asammdf 提供了数据可视化的功能,帮助用户生成报告和图表。

数据可视化
复制代码
import matplotlib.pyplot as plt

with asammdf.MDF(name='example.mf4') as mdf:
    engine_speed = mdf.get('EngineSpeed')
    vehicle_speed = mdf.get('VehicleSpeed')
    
    plt.figure(figsize=(10, 5))
    plt.plot(engine_speed.timestamps, engine_speed.samples, label='Engine Speed')
    plt.plot(vehicle_speed.timestamps, vehicle_speed.samples, label='Vehicle Speed')
    plt.xlabel('Time')
    plt.ylabel('Value')
    plt.legend()
    plt.show()
报告生成

可以将数据和分析结果导出为 PDF 或 HTML 报告。

复制代码
import pandas as pd

with asammdf.MDF(name='example.mf4') as mdf:
    df = mdf.to_dataframe()
    report = pd.DataFrame.to_html(df)
    with open('report.html', 'w') as f:
        f.write(report)

通过这些功能,用户可以进行深入的数据分析和报告生成。

相关推荐
代码游侠1 小时前
应用——Linux进程通信与信号处理
linux·运维·服务器·笔记·学习·信号处理
Access开发易登软件2 小时前
Access开发实战:绘制漏斗图实现业务转化分析
数据库·信息可视化·html·vba·图表·access
墨_浅-2 小时前
教育/培训行业智能体应用分类及知识库检索模型微调
人工智能·分类·数据挖掘
Elastic 中国社区官方博客2 小时前
Kibana 数据可视化的新配色方案 —— 我们如何以及为什么创建它
大数据·elasticsearch·搜索引擎·信息可视化·全文检索·kibana
咕噜企业分发小米4 小时前
阿里云基因测序数据分析平台有哪些成功案例?
阿里云·数据分析·云计算
中渝软通4 小时前
中小企业数字化新标杆:“二级达标”技术解析与实施策略
信息可视化
CryptoPP5 小时前
印度股票市场数据获取与分析实战:基于RESTful API与Python
数据挖掘·数据分析
adaAS14143155 小时前
【矿物识别】基于改进YOLO13-C3k2-ContextGuided的铝土矿智能检测与分类系统
人工智能·分类·数据挖掘
HyperAI超神经5 小时前
预测精度可提升60%,清华李勇团队提出神经符号回归方法,自动推导高精度网络动力学公式
人工智能·ai·数据挖掘·地球科学·神经符号
过期的秋刀鱼!6 小时前
Excel-数据分析开发心得(工具PQ,PP)与开发经验
大数据·数据分析·excel·模型搭建·数据优化·powerquery·powerpivot