即插即用模块(3) -LSK 特征提取

paper:LSKNet: A Foundation Lightweight Backbone for Remote Sensing

Code:https://github.com/zcablii/LSKNet

大型选择性内核块 (LSK Block)

功能

通过动态调整感受野,自适应提取遥感图像中目标的上下文信息,增强目标与环境关联的建模能力,适用于外观相似但环境差异显著的场景。

实现流程

  1. 大型内核卷积分解

    :对输入 ( X X X ) 应用深度可分离卷积,生成多尺度特征图序列 ( U U U )。

  2. 通道混合

    :将 ( U U U ) 拼接,通过 1x1 卷积生成特征图 ( e e e )。

  3. 空间内核选择

    :对 ( e ) 进行平均池化和最大池化,生成描述符 ( A_{avg} ) 和 ( A_{max} )。

    拼接后通过卷积生成空间注意力图 ( SA )。

    应用 sigmoid 生成选择掩码 ( S A i SA_i SAi ),加权融合生成注意力特征 ( S )。

  4. 元素级乘法

    :将 ( X ) 与 ( S ) 相乘,生成输出 ( Y )。

优势

  • 动态调整感受野,适应不同目标的上下文需求。
  • 深度可分离卷积降低计算复杂度。
  • 增强目标与环境的特征关联,提升识别精度。

Large Selective Kernel Block结构图:

2、代码实现

python 复制代码
import torch
import torch.nn as nn


class LSKblock(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.conv0 = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
        self.conv_spatial = nn.Conv2d(dim, dim, 7, stride=1, padding=9, groups=dim, dilation=3)
        self.conv1 = nn.Conv2d(dim, dim // 2, 1)
        self.conv2 = nn.Conv2d(dim, dim // 2, 1)
        self.conv_squeeze = nn.Conv2d(2, 2, 7, padding=3)
        self.conv = nn.Conv2d(dim // 2, dim, 1)

    def forward(self, x):
        attn1 = self.conv0(x)
        attn2 = self.conv_spatial(attn1)

        attn1 = self.conv1(attn1)
        attn2 = self.conv2(attn2)

        attn = torch.cat([attn1, attn2], dim=1)
        avg_attn = torch.mean(attn, dim=1, keepdim=True)
        max_attn, _ = torch.max(attn, dim=1, keepdim=True)
        agg = torch.cat([avg_attn, max_attn], dim=1)
        sig = self.conv_squeeze(agg).sigmoid()
        attn = attn1 * sig[:, 0, :, :].unsqueeze(1) + attn2 * sig[:, 1, :, :].unsqueeze(1)
        attn = self.conv(attn)
        return x * attn


if __name__ == '__main__':
    x = torch.randn(4, 64, 128, 128).cuda()
    model = LSKblock(64).cuda()
    out = model(x)
    print(out.shape)
).cuda()
    model = LSKblock(64).cuda()
    out = model(x)
    print(out.shape)
相关推荐
MARS_AI_3 小时前
云蝠智能 Voice Agent 落地展会邀约场景:重构会展行业的智能交互范式
人工智能·自然语言处理·重构·交互·语音识别·信息与通信
weixin_422456443 小时前
第N7周:调用Gensim库训练Word2Vec模型
人工智能·机器学习·word2vec
归去_来兮5 小时前
深度学习模型在C++平台的部署
c++·深度学习·模型部署
HuggingFace7 小时前
Hugging Face 开源机器人 Reachy Mini 开启预定
人工智能
企企通采购云平台7 小时前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
超级小忍7 小时前
Spring AI ETL Pipeline使用指南
人工智能·spring
张较瘦_8 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
论文阅读·人工智能
一只小灿灿8 小时前
前端计算机视觉:使用 OpenCV.js 在浏览器中实现图像处理
前端·opencv·计算机视觉
巴伦是只猫8 小时前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习
好心的小明9 小时前
【王树森推荐系统】召回11:地理位置召回、作者召回、缓存召回
人工智能·缓存·推荐系统·推荐算法