月之暗面最新开源模型!Kimi-Audio:革新多模态音频处理,统一音频理解、生成与对话!

处理音频数据时,我们是不是经常要切换各种工具?

转写用 ASR(语音识别),转音频又得找稳定的 TTS 模型(工具)......

几个小时前,月之暗面 Moonshot AI 正式开源了 Kimi-Audio,可以帮助我们解决处理音频时来回切换不同工具的痛点。

Kimi-Audio 由月之暗面(Moonshot AI)开发,是一款开源音频基础模型,基于 Qwen 2.5-7B 构建,可以统一处理音频理解、生成和对话任务。

依托 1300 万小时音频数据预训练,通过混合输入(离散语义标记 + 连续声学特征)与创新架构,统一多种任务。

Kimi-Audio 支持语音识别(ASR)、音频问答(AQA)、音频字幕(AAC)、情感识别(SER)、声音分类(SEC/ASC)、文本到语音(TTS)、语音转换(VC)和端到端语音对话。

主要功能

  • 语音识别 (ASR):在AISHELL-1上字错误率(WER)仅 0.60%,优于 Whisper 和 Paraformer

  • 多任务音频理解:声音分类、情感识别、音频问答任务,表现出色

  • 端到端语音对话:支持情绪、口音、语速等个性化控制

  • 高效流式生成:使用 BigVGAN 声码器和分块流机制(look-ahead),延迟低至毫秒级

  • 开源评估工具包:Kimi-Audio-Evalkit 提供标准化评估,覆盖 ASR、AQA、SER 等任务

快速部署

Kimi-Audio 提供 Docker 和本地部署两种方式。

本地部署

1、克隆项目

bash 复制代码
git clone https://github.com/MoonshotAI/Kimi-Audio
cd Kimi-Audio

2、安装依赖

复制代码
pip install -r requirements.txt

Docker 部署

1、构建镜像

css 复制代码
docker build -t kimi-audio:v0.1 .

或使用预构建镜像

bash 复制代码
docker pull moonshotai/kimi-audio:v0.1

2、运行容器

css 复制代码
docker run -it --gpus all kimi-audio:v0.1

使用方法

1、加载模型

python 复制代码
import soundfile as sf
from kimia_infer.api.kimia import KimiAudio

# --- 1. 加载模型 ---
model_path = "moonshotai/Kimi-Audio-7B-Instruct" 
model = KimiAudio(model_path=model_path, load_detokenizer=True)

# --- 2. 设置采样参数 ---
sampling_params = {
    "audio_temperature": 0.8,
    "audio_top_k": 10,
    "text_temperature": 0.0,
    "text_top_k": 5,
    "audio_repetition_penalty": 1.0,
    "audio_repetition_window_size": 64,
    "text_repetition_penalty": 1.0,
    "text_repetition_window_size": 16,
}

2、语音识别(ASR)- 示例

ini 复制代码
# --- 3. Example 1: Audio-to-Text (ASR) ---
messages_asr = [
    # You can provide context or instructions as text
    {"role": "user", "message_type": "text", "content": "Please transcribe the following audio:"},
    # Provide the audio file path
    {"role": "user", "message_type": "audio", "content": "test_audios/asr_example.wav"}
]

# Generate only text output
_, text_output = model.generate(messages_asr, **sampling_params, output_type="text")
print(">>> ASR Output Text: ", text_output) # Expected output: "这并不是告别,这是一个篇章的结束,也是新篇章的开始。"

3、语音对话 - 示例

python 复制代码
# --- 4. Example 2: Audio-to-Audio/Text Conversation ---
messages_conversation = [
    # Start conversation with an audio query
    {"role": "user", "message_type": "audio", "content": "test_audios/qa_example.wav"}
]

# Generate both audio and text output
wav_output, text_output = model.generate(messages_conversation, **sampling_params, output_type="both")

# Save the generated audio
output_audio_path = "output_audio.wav"
sf.write(output_audio_path, wav_output.detach().cpu().view(-1).numpy(), 24000) # Assuming 24kHz output
print(f">>> Conversational Output Audio saved to: {output_audio_path}")
print(">>> Conversational Output Text: ", text_output) # Expected output: "A."

print("Kimi-Audio inference examples complete.")

运行评估工具包

1、克隆 Evalkit

bash 复制代码
git clone https://github.com/MoonshotAI/Kimi-Audio-Evalkit
cd Kimi-Audio-Evalkit
pip install -r requirements.txt

2、运行 ASR 评估

css 复制代码
python almeval/datasets/ds_asr.py --model kimi-audio

更多使用细则可参考项目文档或HF模型说明。

写在最后

Kimi Audio 是基于 Qwen 2.5-7B 构建的音频-文本多模态基础模型,它既能听懂,又能说话,而且理解深、表达自然、响应快。

具备语音识别(ASR)、音频理解(分类/情绪识别/问答)、端到端语音生成(TTS对话)等核心功能,真正把过去需要多个不同模型的能力,统一到一套模型架构之中!

是一款同时能听懂、听会、还能回答、还能说的超级音频模型,一步到位搞定音频所有需求。

比如用它做智能听写系统、语音版Chatbot、音频情绪检测之类的都是可以满足的。

GitHub 项目地址:github.com/MoonshotAI/...

模型 HuggingFace:huggingface.co/moonshotai/...

相关推荐
Godspeed Zhao2 小时前
自动驾驶中的传感器技术13——Camera(4)
人工智能·机器学习·自动驾驶·camera·摄像头
Godspeed Zhao2 小时前
自动驾驶中的传感器技术6——概述(6)-GNSS
人工智能·机器学习·自动驾驶·gnss·导航定位
caijingshiye3 小时前
BitMart 启动中文品牌“币市”:引领加密资产本地化发展新篇章
人工智能·区块链
视觉语言导航3 小时前
中科院自动化所机器人视觉中的多模态融合与视觉语言模型综述
人工智能·深度学习·机器人·具身智能
SickeyLee5 小时前
产品经理的成长路径与目标总结
大数据·人工智能
叫我:松哥5 小时前
python案例:基于python 神经网络cnn和LDA主题分析的旅游景点满意度分析
人工智能·python·神经网络·数据挖掘·数据分析·cnn·课程设计
2202_756749696 小时前
01 基于sklearn的机械学习-机械学习的分类、sklearn的安装、sklearn数据集及数据集的划分、特征工程(特征提取与无量纲化、特征降维)
人工智能·python·机器学习·分类·sklearn
SoFlu软件机器人6 小时前
飞算科技:以原创之力,开启Java开发新纪元与行业数智变革
人工智能·科技
沫儿笙6 小时前
OTC焊接机器人节能技巧
大数据·人工智能·机器人
王者鳜錸6 小时前
PYTHON从入门到实践-18Django从零开始构建Web应用
前端·python·sqlite