Spark Streaming核心编程总结(四)

一、有状态转化操作:UpdateStateByKey

概念与作用

UpdateStateByKey 用于在流式计算中跨批次维护状态(如累加统计词频)。它允许基于键值对形式的DStream,通过自定义状态更新函数,将历史状态与新数据结合,生成包含最新状态的DStream。

实现步骤

  1. 定义状态类型:状态可以是任意数据类型(如示例中的Int类型)。

  2. 定义状态更新函数:接收当前批次的数据序列和旧状态,返回新状态。

Scala 复制代码
val updateFunc = (values: Seq[Int], state: Option[Int]) => {
val currentCount = values.sum
val previousCount = state.getOrElse(0)
Some(currentCount + previousCount)
}
  1. 配置检查点目录:必须设置检查点以持久化状态,确保容错性。
Scala 复制代码
ssc.checkpoint("./ck")
  1. 应用操作:通过updateStateByKey将函数作用于键值对DStream。
Scala 复制代码
val stateDStream = pairs.updateStateByKey[Int](updateFunc)

二、窗口操作:WindowOperations

概念与作用

窗口操作基于时间窗口动态处理数据,适用于滑动统计(如最近12秒内的词频)。需定义两个参数:

窗口时长:计算的时间范围(如Seconds(12))。

滑动步长:触发计算的间隔(如Seconds(6))。

实现示例

Scala 复制代码
val wordCounts = pairs.reduceByKeyAndWindow(
(a: Int, b: Int) => a + b, // 聚合函数
Seconds(12), // 窗口时长
Seconds(6) // 滑动步长
)

三、DStream输出操作

输出操作触发DStream的实际计算,支持多种数据落地方式:

  1. 基础输出

print():打印每批次前10个元素,用于调试。

saveAsTextFiles / saveAsObjectFiles / saveAsHadoopFiles:将数据保存为文本、序列化文件或Hadoop格式。

  1. 通用输出:foreachRDD

允许对每个RDD执行自定义操作(如写入数据库)。需注意:

连接管理:避免在Driver端创建连接(序列化问题),应在foreachPartition中按分区创建。

资源优化:每个分区建立一次连接,而非每条数据,减少开销。

示例:

Scala 复制代码
wordCounts.foreachRDD { rdd =>
rdd.foreachPartition { partition =>
val connection = createDatabaseConnection()
partition.foreach(data => connection.write(data))
connection.close()
}
}
相关推荐
惊讶的猫12 分钟前
redis分片集群
数据库·redis·缓存·分片集群·海量数据存储·高并发写
JavaGuide15 分钟前
一款悄然崛起的国产规则引擎,让业务编排效率提升 10 倍!
java·spring boot
不爱缺氧i20 分钟前
完全卸载MariaDB
数据库·mariadb
吃虫子的人21 分钟前
记录使用Arthas修改线上源码重新加载的一次过程
java·arthas
纤纡.27 分钟前
Linux中SQL 从基础到进阶:五大分类详解与表结构操作(ALTER/DROP)全攻略
linux·数据库·sql
一晌小贪欢30 分钟前
Python 爬虫进阶:如何利用反射机制破解常见反爬策略
开发语言·爬虫·python·python爬虫·数据爬虫·爬虫python
jiunian_cn41 分钟前
【Redis】渐进式遍历
数据库·redis·缓存
阿猿收手吧!44 分钟前
【C++】异步编程:std::async终极指南
开发语言·c++
figo10tf1 小时前
Spring Boot项目集成Redisson 原始依赖与 Spring Boot Starter 的流程
java·spring boot·后端