Spark Streaming核心编程总结(四)

一、有状态转化操作:UpdateStateByKey

概念与作用

UpdateStateByKey 用于在流式计算中跨批次维护状态(如累加统计词频)。它允许基于键值对形式的DStream,通过自定义状态更新函数,将历史状态与新数据结合,生成包含最新状态的DStream。

实现步骤

  1. 定义状态类型:状态可以是任意数据类型(如示例中的Int类型)。

  2. 定义状态更新函数:接收当前批次的数据序列和旧状态,返回新状态。

Scala 复制代码
val updateFunc = (values: Seq[Int], state: Option[Int]) => {
val currentCount = values.sum
val previousCount = state.getOrElse(0)
Some(currentCount + previousCount)
}
  1. 配置检查点目录:必须设置检查点以持久化状态,确保容错性。
Scala 复制代码
ssc.checkpoint("./ck")
  1. 应用操作:通过updateStateByKey将函数作用于键值对DStream。
Scala 复制代码
val stateDStream = pairs.updateStateByKey[Int](updateFunc)

二、窗口操作:WindowOperations

概念与作用

窗口操作基于时间窗口动态处理数据,适用于滑动统计(如最近12秒内的词频)。需定义两个参数:

窗口时长:计算的时间范围(如Seconds(12))。

滑动步长:触发计算的间隔(如Seconds(6))。

实现示例

Scala 复制代码
val wordCounts = pairs.reduceByKeyAndWindow(
(a: Int, b: Int) => a + b, // 聚合函数
Seconds(12), // 窗口时长
Seconds(6) // 滑动步长
)

三、DStream输出操作

输出操作触发DStream的实际计算,支持多种数据落地方式:

  1. 基础输出

print():打印每批次前10个元素,用于调试。

saveAsTextFiles / saveAsObjectFiles / saveAsHadoopFiles:将数据保存为文本、序列化文件或Hadoop格式。

  1. 通用输出:foreachRDD

允许对每个RDD执行自定义操作(如写入数据库)。需注意:

连接管理:避免在Driver端创建连接(序列化问题),应在foreachPartition中按分区创建。

资源优化:每个分区建立一次连接,而非每条数据,减少开销。

示例:

Scala 复制代码
wordCounts.foreachRDD { rdd =>
rdd.foreachPartition { partition =>
val connection = createDatabaseConnection()
partition.foreach(data => connection.write(data))
connection.close()
}
}
相关推荐
两圆相切2 小时前
Oracle触发器:数据世界的“隐形守护者“
数据库·oracle
掘根3 小时前
【MySQL进阶】三大范式
数据库·mysql·oracle
深度学习04074 小时前
【Linux服务器】-MySQL数据库参数调优
linux·服务器·数据库
ZC1111K5 小时前
maven(配置)
java·maven
GISer_Jing5 小时前
JavaScript 中Object、Array 和 String的常用方法
开发语言·javascript·ecmascript
慕y2746 小时前
Java学习第五十八部分——设计模式
java·学习·设计模式
躲在云朵里`6 小时前
SpringBoot的介绍和项目搭建
java·spring boot·后端
别致的影分身6 小时前
MySQL InnoDB 存储引擎
数据库·mysql
菜还不练就废了6 小时前
7.19-7.20 Java基础 | File类 I/O流学习笔记
java·笔记·学习
Yweir6 小时前
Elastic Search 8.x 分片和常见性能优化
java·python·elasticsearch