用Python做有趣的AI项目5:AI 画画机器人(图像风格迁移)

这个项目将使用 PyTorch 实现图像风格迁移(Neural Style Transfer),让一张图片看起来具有另一张图片的"艺术风格"。

🔧 开发环境建议

Python 3.8+

PyTorch(pip install torch torchvision)

PIL(pip install pillow)

CUDA(可选,但建议有 GPU)

🗂️ 项目结构示例

cpp 复制代码
bash

style_transfer/
├── style.jpg         # 风格图像(如:星夜)
├── content.jpg       # 内容图像(如:你的自拍)
├── style_transfer.py # 主程序

✅ Step-by-step:图像风格迁移项目详解(含代码)

✅ Step 1:导入库

cpp 复制代码
python

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
from PIL import Image
import copy
import matplotlib.pyplot as plt

✅ Step 2:设备设置(使用 GPU 优先)

cpp 复制代码
python

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

✅ Step 3:图像加载与预处理函数

cpp 复制代码
python

def load_image(img_path, max_size=400):
    image = Image.open(img_path).convert('RGB')
    
    # 限制最大尺寸
    if max(image.size) > max_size:
        size = max_size
    else:
        size = max(image.size)

    in_transform = transforms.Compose([
        transforms.Resize(size),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])

    image = in_transform(image).unsqueeze(0)
    return image.to(device)

✅ Step 4:定义函数来展示图像

cpp 复制代码
python

def im_convert(tensor):
    image = tensor.to("cpu").clone().detach()
    image = image.squeeze(0)
    image = transforms.ToPILImage()(image)
    return image

✅ Step 5:加载内容图像和风格图像

cpp 复制代码
python

content = load_image("content.jpg").to(device)
style = load_image("style.jpg").to(device)

✅ Step 6:加载预训练的 VGG 模型(VGG19)

cpp 复制代码
python

vgg = models.vgg19(pretrained=True).features.to(device).eval()

我们只取模型中的某些层用于提取风格与内容特征。

✅ Step 7:定义提取内容和风格特征的函数

cpp 复制代码
python

def get_features(image, model, layers=None):
    if layers is None:
        layers = {
            '0': 'conv1_1',
            '5': 'conv2_1',
            '10': 'conv3_1',
            '19': 'conv4_1',
            '21': 'conv4_2',  # content representation
            '28': 'conv5_1'
        }
        
    features = {}
    x = image
    for name, layer in model._modules.items():
        x = layer(x)
        if name in layers:
            features[layers[name]] = x
            
    return features

✅ Step 8:定义 Gram 矩阵函数(风格提取核心)

cpp 复制代码
python

def gram_matrix(tensor):
    b, d, h, w = tensor.size()
    tensor = tensor.view(d, h * w)
    gram = torch.mm(tensor, tensor.t())
    return gram 

✅ Step 9:提取内容和风格特征

cpp 复制代码
python

content_features = get_features(content, vgg)
style_features = get_features(style, vgg)


# 为每个风格层计算 Gram 矩阵
style_grams = {layer: gram_matrix(style_features[layer]) for layer in style_features}

✅ Step 10:初始化目标图像(从内容图像复制)

cpp 复制代码
python

target = content.clone().requires_grad_(True).to(device)

✅ Step 11:设置超参数

cpp 复制代码
python

style_weights = {
    'conv1_1': 1.0,
    'conv2_1': 0.75,
    'conv3_1': 0.2,
    'conv4_1': 0.2,
    'conv5_1': 0.2
}
content_weight = 1e4  # α
style_weight = 1e2    # β

✅ Step 12:设置优化器

cpp 复制代码
python

optimizer = optim.Adam([target], lr=0.003)

✅ Step 13:训练模型

cpp 复制代码
python

steps = 300

for i in range(1, steps+1):
    target_features = get_features(target, vgg)

    content_loss = torch.mean((target_features['conv4_2'] - content_features['conv4_2']) ** 2)

    style_loss = 0
    for layer in style_weights:
        target_feature = target_features[layer]
        target_gram = gram_matrix(target_feature)
        style_gram = style_grams[layer]
        layer_style_loss = style_weights[layer] * torch.mean((target_gram - style_gram) ** 2)
        style_loss += layer_style_loss / (target_feature.shape[1] ** 2)

    total_loss = content_weight * content_loss + style_weight * style_loss

    optimizer.zero_grad()
    total_loss.backward()
    optimizer.step()

    if i % 50 == 0:
        print(f"Step {i}, Total loss: {total_loss.item():.4f}")

✅ Step 14:保存并显示结果图像

cpp 复制代码
python

final_img = im_convert(target)
final_img.save("result.jpg")
final_img.show()

🖼️ 示例效果

将自拍和《星夜.jpg》结合,输出一张油画风格的人像。

附上完整代码:

cpp 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
from PIL import Image
import copy


# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


# 图像加载和预处理
def load_image(img_path, max_size=400):
    image = Image.open(img_path).convert('RGB')

    if max(image.size) > max_size:
        size = max_size
    else:
        size = max(image.size)

    in_transform = transforms.Compose([
        transforms.Resize(size),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=[0.485, 0.456, 0.406],
            std=[0.229, 0.224, 0.225]
        )
    ])

    image = in_transform(image).unsqueeze(0)
    return image.to(device)


# 还原为可视图像
def im_convert(tensor):
    image = tensor.to("cpu").clone().detach()
    image = image.squeeze(0)
    image = transforms.ToPILImage()(image)
    return image


# 提取特征
def get_features(image, model, layers=None):
    if layers is None:
        layers = {
            '0': 'conv1_1',
            '5': 'conv2_1',
            '10': 'conv3_1',
            '19': 'conv4_1',
            '21': 'conv4_2',  # 内容层
            '28': 'conv5_1'
        }

    features = {}
    x = image
    for name, layer in model._modules.items():
        x = layer(x)
        if name in layers:
            features[layers[name]] = x
    return features


# Gram矩阵
def gram_matrix(tensor):
    b, d, h, w = tensor.size()
    tensor = tensor.view(d, h * w)
    gram = torch.mm(tensor, tensor.t())
    return gram


# 主程序入口
def main():
    # 加载图像
    content = load_image("content.jpg")
    style = load_image("style.jpg")

    # 加载预训练模型
    vgg = models.vgg19(pretrained=True).features.to(device).eval()

    content_features = get_features(content, vgg)
    style_features = get_features(style, vgg)

    style_grams = {layer: gram_matrix(style_features[layer]) for layer in style_features}

    target = content.clone().requires_grad_(True).to(device)

    # 权重设置
    style_weights = {
        'conv1_1': 1.0,
        'conv2_1': 0.75,
        'conv3_1': 0.2,
        'conv4_1': 0.2,
        'conv5_1': 0.2
    }

    content_weight = 1e4
    style_weight = 1e2

    optimizer = optim.Adam([target], lr=0.003)
    steps = 300

    print("开始风格迁移...")
    for i in range(1, steps + 1):
        target_features = get_features(target, vgg)

        content_loss = torch.mean((target_features['conv4_2'] - content_features['conv4_2']) ** 2)

        style_loss = 0
        for layer in style_weights:
            target_feature = target_features[layer]
            target_gram = gram_matrix(target_feature)
            style_gram = style_grams[layer]
            layer_style_loss = style_weights[layer] * torch.mean((target_gram - style_gram) ** 2)
            style_loss += layer_style_loss / (target_feature.shape[1] ** 2)

        total_loss = content_weight * content_loss + style_weight * style_loss

        optimizer.zero_grad()
        total_loss.backward()
        optimizer.step()

        if i % 50 == 0:
            print(f"Step {i}/{steps}, Total loss: {total_loss.item():.4f}")

    # 保存结果
    result = im_convert(target)
    result.save("result.jpg")
    print("风格迁移完成!结果保存在 result.jpg")


# 运行主函数
if __name__ == "__main__":
    main()

✅ 使用说明

🖼️ 准备:

把你的内容图命名为 content.jpg

把你的风格图命名为 style.jpg

放在与 style_transfer.py 同一个目录下

▶️ 运行:

cpp 复制代码
bash

python style_transfer.py

#🖼️ 输出:

运行成功后,生成的图像将保存在:

cpp 复制代码
result.jpg
相关推荐
w***4816 分钟前
Python中的简单爬虫
爬虫·python·信息可视化
腾讯WeTest17 分钟前
Al in CrashSight ——基于AI优化异常堆栈分类模型
人工智能·分类·数据挖掘
凯子坚持 c34 分钟前
openGauss向量数据库技术演进与AI应用生态全景
数据库·人工智能
嵌入式-老费36 分钟前
自己动手写深度学习框架(从网络训练到部署)
人工智能·深度学习
z***56561 小时前
【玩转全栈】----Django模板语法、请求与响应
数据库·python·django
温柔哥`1 小时前
HiProbe-VAD:通过在免微调多模态大语言模型中探测隐状态实现视频异常检测
人工智能·语言模型·音视频
voidmort1 小时前
web3.py 简介:面向 Python 开发者的以太坊
开发语言·python·web3.py
后台开发者Ethan1 小时前
LangGraph 的持久化
python·langgraph
强化学习与机器人控制仿真1 小时前
字节最新开源模型 DA3(Depth Anything 3)使用教程(一)从任意视角恢复视觉空间
人工智能·深度学习·神经网络·opencv·算法·目标检测·计算机视觉
机器之心2 小时前
如视发布空间大模型Argus1.0,支持全景图等多元输入,行业首创!
人工智能·openai