LLM用于科学假设生成:探索与挑战

科学假设包含待验证的预测、解释和见解,是科学发现的关键前期步骤。围绕如何产生新的科学假设,美国斯坦福大学曾经提出Bit-Flip方法[1]:即首先识别出研究领域中现有方法普遍含有的假设(这是Bit部分),然后提出与该假设不同的新的思路(这是Flip部分)。以下是Bit-Flip方法的一个示例:

  • Bit部分:早期的机器翻译将待翻译的整个语句映射到一个向量上;
  • Flip部分:针对待翻译语句(特别是长语句)中的不同部分和不同信息,分别进行编解码,以提高翻译质量。

Bit-Flip方法的更多示例可以参考有关文档[1]。

Bit-Flip方法+LLM

大语言模型(LLM)能够针对文献进行理解,也能够生成新的文字内容。将LLM与上述的Bit-Flip方法相结合,来生成新的科学假设,应该是个不错的想法。近期发布的一篇论文[2]就围绕这一思路,介绍了作者们所进行的探索。

这篇论文提出了一个名为HypoGen的数据集,其中包含了从大量学术论文中提取的Bit、Flip、以及其它数据项;经过HypoGen数据集微调后的LLM,在推理时可以根据输入的Bit信息,生成新颖的见解、以及思考过程的描述。具体而言:

  • 作者们根据计算机科学领域的大量会议论文,使用OpenAI的o1模型,提取出5000多组Bit、Flip、Spark、以及Chain-of-Reasoning信息,形成HypoGen数据集,其中,Bit和Flip信息的定义如上文所述,Spark信息包含的是一篇论文核心见解的摘要,Chain-of-Reasoning信息包含的是根据一篇论文的全文生成的、从Bit到Flip思考过程的描述;
  • HypoGen数据集可以在Hugging Face上获取[3];
  • 经过HypoGen数据集微调后的LLaMA模型,在推理时可以根据输入的Bit信息,生成Spark和Chain-of-Reasoning信息。

上述论文[2]在评估生成结果时采用了三类方法:

  • 自动指标‌评估‌:采用困惑度(Perplexity,衡量生成结果的流畅性和连贯性)、IAScore(衡量生成结果与相应论文作者提出的研究想法之间的对齐程度)、以及想法独特性指数(Idea Distinctiveness Index,衡量生成的多个想法之间的语义多样性)进行评估;
  • LLM评估‌:使用Anthropic的Claude 3.7 Sonnet-Thinking模型来评估生成结果的新颖性与可行性,并进一步汇总成生成结果的总体评估;
  • 人工评估‌:人工验证LLM评估。

在对测试数据集的测试中,以上三类评估显示:

  • 自动指标‌评估方面:相对于微调前的模型,经过HypoGen数据集微调后的LLaMA模型所生成的结果与相应论文作者提出的研究想法对齐得更好,但在想法独特性指数上有所下降,揭示出模型的对齐性与想法的语义多样性之间可能存在负相关的关系;
  • LLM评估方面:经过HypoGen数据集微调后的LLaMA模型所生成的结果在总体上优于1-Shot方法,但生成结果的新颖性与可行性之间显示出负相关的关系;
  • 人工评估方面:小规模的人工评估与LLM评估在结果上基本一致,进一步证实了经过Bit、Flip、Spark、以及Chain-of-Reasoning数据微调后的模型在结果生成质量上的提升。

展望

LLM用于科学假设的生成,其实已经积累了不少研究[4]。然而该领域仍处于早期,诸多问题,包括生成结果的事实准确性‌、生成结果的评估方法、生成过程的透明性、跨学科的泛化能力等等,有待更多的探索。

参考文献

1\] [web.stanford.edu/class/cs197...](https://link.juejin.cn?target=https%3A%2F%2Fweb.stanford.edu%2Fclass%2Fcs197c%2Fslides%2F02-literature-search.pdf "https://web.stanford.edu/class/cs197c/slides/02-literature-search.pdf") \[2\] Sparks of Science: Hypothesis Generation Using Structured Paper Data [arxiv.org/abs/2504.12...](https://link.juejin.cn?target=https%3A%2F%2Farxiv.org%2Fabs%2F2504.12976 "https://arxiv.org/abs/2504.12976") 使用许可协议:CC BY. [creativecommons.org/licenses/by...](https://link.juejin.cn?target=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F "https://creativecommons.org/licenses/by/4.0/") \[3\] [huggingface.co/datasets/Un...](https://link.juejin.cn?target=https%3A%2F%2Fhuggingface.co%2Fdatasets%2FUniverseTBD%2Fhypogen-dr1 "https://huggingface.co/datasets/UniverseTBD/hypogen-dr1") \[4\] A Survey on Hypothesis Generation for Scientific Discovery in the Era of Large Language Models [arxiv.org/abs/2504.05...](https://link.juejin.cn?target=https%3A%2F%2Farxiv.org%2Fabs%2F2504.05496 "https://arxiv.org/abs/2504.05496") 使用许可协议:CC BY. [creativecommons.org/licenses/by...](https://link.juejin.cn?target=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F "https://creativecommons.org/licenses/by/4.0/") 封面图:Kindel Media、pexels.com

相关推荐
毒果1 分钟前
深度学习大模型: AI 阅卷替代人工阅卷
人工智能·深度学习
吾日三省吾码11 分钟前
GitHub Copilot (Gen-AI) 很有用,但不是很好
人工智能·github·copilot
一颗橘子宣布成为星球27 分钟前
Unity AI-使用Ollama本地大语言模型运行框架运行本地Deepseek等模型实现聊天对话(一)
人工智能·unity·语言模型·游戏引擎
南 阳1 小时前
从微服务到AI服务:Nacos 3.0如何重构下一代动态治理体系?
人工智能·微服务·云原生·重构
wuqingshun3141591 小时前
蓝桥杯 11. 打印大X
数据结构·算法·职场和发展·蓝桥杯·深度优先
fmingzh1 小时前
NVIDIA高级辅助驾驶安全与技术读后感
人工智能·安全·自动驾驶
Blossom.1182 小时前
量子网络:构建未来通信的超高速“高速公路”
网络·opencv·算法·安全·机器学习·密码学·量子计算
qsmyhsgcs2 小时前
Java程序员转人工智能入门学习路线图(2025版)
java·人工智能·学习·机器学习·算法工程师·人工智能入门·ai算法工程师
A林玖2 小时前
【机器学习】朴素贝叶斯
人工智能·算法·机器学习
六边形战士DONK2 小时前
神经网络基础[损失函数,bp算法,梯度下降算法 ]
人工智能·神经网络·算法