redis+lua+固定窗口实现分布式限流

用key的过期时间替代固定窗口的时间戳

lua 复制代码
-- KEYS[1]: 限流的key
-- ARGV[1]: 限流窗口大小(秒)
-- ARGV[2]: 限流阈值

local key = KEYS[1]
local window = tonumber(ARGV[1])
local limit = tonumber(ARGV[2])

-- 尝试获取当前计数
local current = redis.call("GET", key)

if current == false then
    -- key不存在,初始化计数器并设置过期时间
    redis.call("SET", key, 1, "EX", window)
    return 1
else
    -- key存在,检查是否超过限制
    if tonumber(current) < limit then
        redis.call("INCR", key)
        return 1
    else
        return 0
    end
end

java客户端

java 复制代码
public class FixedWindowRateLimiterWithTTL {
    private Jedis jedis;
    private String key;
    private int window; // 窗口大小(秒)
    private int limit;  // 限流阈值
    
    private static final String LUA_SCRIPT =
        "local key = KEYS[1]\n" +
        "local window = tonumber(ARGV[1])\n" +
        "local limit = tonumber(ARGV[2])\n" +
        "local current = redis.call(\"GET\", key)\n" +
        "if current == false then\n" +
        "    redis.call(\"SET\", key, 1, \"EX\", window)\n" +
        "    return 1\n" +
        "else\n" +
        "    if tonumber(current) < limit then\n" +
        "        redis.call(\"INCR\", key)\n" +
        "        return 1\n" +
        "    else\n" +
        "        return 0\n" +
        "    end\n" +
        "end";
    
    public FixedWindowRateLimiterWithTTL(Jedis jedis, String key, int window, int limit) {
        this.jedis = jedis;
        this.key = key;
        this.window = window;
        this.limit = limit;
    }
    
    public boolean allowRequest() {
        Object result = jedis.eval(LUA_SCRIPT, 
            Collections.singletonList(key),
            Arrays.asList(
                String.valueOf(window),
                String.valueOf(limit)
            ));
        return "1".equals(result.toString());
    }
}

使用

java 复制代码
public static void main(String[] args) {
    Jedis jedis = new Jedis("localhost");
    // 创建一个每分钟最多100次请求的限流器
    FixedWindowRateLimiterWithTTL limiter = 
        new FixedWindowRateLimiterWithTTL(jedis, "api:limit:user1", 60, 100);
    
    for (int i = 0; i < 120; i++) {
        if (limiter.allowRequest()) {
            System.out.println("处理请求 " + i);
        } else {
            System.out.println("限流请求 " + i);
        }
    }
    
    jedis.close();
}

优点:实现简单

缺点:

固定窗口算法无法解决临界问题

Redis的过期机制是惰性删除+定期删除,可能导致key实际过期时间与预期有微小差异

重启导致的窗口重置
在超高并发下会成为单点瓶颈

相关推荐
m0_687399842 小时前
telnet localhost 15672 RabbitMQ “Connection refused“ 错误表示目标主机拒绝了连接请求。
分布式·rabbitmq
indexsunny2 小时前
互联网大厂Java面试实战:微服务与Spring生态技术解析
java·spring boot·redis·kafka·mybatis·hibernate·microservices
陌上丨2 小时前
生产环境分布式锁的常见问题和解决方案有哪些?
分布式
新新学长搞科研2 小时前
【智慧城市专题IEEE会议】第六届物联网与智慧城市国际学术会议(IoTSC 2026)
人工智能·分布式·科技·物联网·云计算·智慧城市·学术会议
为什么不问问神奇的海螺呢丶2 小时前
n9e categraf redis监控配置
前端·redis·bootstrap
笨蛋不要掉眼泪2 小时前
RAG知识库核心API架构全解析:从文档加载到向量检索的完整流程
java·spring boot·redis·ai·架构
泡泡以安2 小时前
Scrapy分布式爬虫调度器架构设计说明
分布式·爬虫·scrapy·调度器
学到头秃的suhian3 小时前
Redis执行
redis
没有bug.的程序员4 小时前
RocketMQ 与 Kafka 深度对垒:分布式消息引擎内核、事务金融级实战与高可用演进指南
java·分布式·kafka·rocketmq·分布式消息·引擎内核·事务金融
上海锟联科技4 小时前
250MSPS DAS 在地铁监测中够用吗?——来自上海锟联科技的工程实践
分布式·科技·分布式光纤传感·das解调卡·光频域反射·das