redis+lua+固定窗口实现分布式限流

用key的过期时间替代固定窗口的时间戳

lua 复制代码
-- KEYS[1]: 限流的key
-- ARGV[1]: 限流窗口大小(秒)
-- ARGV[2]: 限流阈值

local key = KEYS[1]
local window = tonumber(ARGV[1])
local limit = tonumber(ARGV[2])

-- 尝试获取当前计数
local current = redis.call("GET", key)

if current == false then
    -- key不存在,初始化计数器并设置过期时间
    redis.call("SET", key, 1, "EX", window)
    return 1
else
    -- key存在,检查是否超过限制
    if tonumber(current) < limit then
        redis.call("INCR", key)
        return 1
    else
        return 0
    end
end

java客户端

java 复制代码
public class FixedWindowRateLimiterWithTTL {
    private Jedis jedis;
    private String key;
    private int window; // 窗口大小(秒)
    private int limit;  // 限流阈值
    
    private static final String LUA_SCRIPT =
        "local key = KEYS[1]\n" +
        "local window = tonumber(ARGV[1])\n" +
        "local limit = tonumber(ARGV[2])\n" +
        "local current = redis.call(\"GET\", key)\n" +
        "if current == false then\n" +
        "    redis.call(\"SET\", key, 1, \"EX\", window)\n" +
        "    return 1\n" +
        "else\n" +
        "    if tonumber(current) < limit then\n" +
        "        redis.call(\"INCR\", key)\n" +
        "        return 1\n" +
        "    else\n" +
        "        return 0\n" +
        "    end\n" +
        "end";
    
    public FixedWindowRateLimiterWithTTL(Jedis jedis, String key, int window, int limit) {
        this.jedis = jedis;
        this.key = key;
        this.window = window;
        this.limit = limit;
    }
    
    public boolean allowRequest() {
        Object result = jedis.eval(LUA_SCRIPT, 
            Collections.singletonList(key),
            Arrays.asList(
                String.valueOf(window),
                String.valueOf(limit)
            ));
        return "1".equals(result.toString());
    }
}

使用

java 复制代码
public static void main(String[] args) {
    Jedis jedis = new Jedis("localhost");
    // 创建一个每分钟最多100次请求的限流器
    FixedWindowRateLimiterWithTTL limiter = 
        new FixedWindowRateLimiterWithTTL(jedis, "api:limit:user1", 60, 100);
    
    for (int i = 0; i < 120; i++) {
        if (limiter.allowRequest()) {
            System.out.println("处理请求 " + i);
        } else {
            System.out.println("限流请求 " + i);
        }
    }
    
    jedis.close();
}

优点:实现简单

缺点:

固定窗口算法无法解决临界问题

Redis的过期机制是惰性删除+定期删除,可能导致key实际过期时间与预期有微小差异

重启导致的窗口重置
在超高并发下会成为单点瓶颈

相关推荐
群联云防护小杜21 分钟前
云服务器主动防御策略与自动化防护(下)
运维·服务器·分布式·安全·自动化·音视频
TE-茶叶蛋2 小时前
秒杀压测计划 + Kafka 分区设计参考
分布式·kafka
王景程6 小时前
如何使用 Redis 缓存验证码
redis·缓存·mybatis
编程在手天下我有6 小时前
Redis 常见问题深度剖析与全方位解决方案指南
数据库·redis·缓存·性能优化·数据持久化·分布式系统
啊喜拔牙7 小时前
如何搭建spark yarn模式的集群
大数据·分布式·spark
听雨·眠7 小时前
关于kafka
分布式·kafka·消息队列
TE-茶叶蛋7 小时前
NestJS + Kafka 秒杀系统完整实践总结
分布式·kafka
慧一居士8 小时前
Kafka批量消费部分处理成功时的手动提交方案
分布式·后端·kafka
搞不懂语言的程序员9 小时前
如何实现Kafka的Exactly-Once语义?
分布式·kafka·linq