使用 OpenCV 实现图像中心旋转

在图像处理中,围绕中心点旋转图像是一个常见的需求。无论是为了数据增强、视觉效果,还是图像对齐,旋转图像都是一项基础且重要的操作。本文将详细介绍如何使用 OpenCV 实现围绕图像中心旋转的功能,并深入探讨其背后的数学原理。


一、旋转图像的基本概念

图像旋转是指将图像围绕一个指定的点(通常是图像中心)旋转一定角度。旋转后的图像尺寸可能会发生变化,以确保所有原始像素都能在旋转后的图像中显示。旋转过程中,需要考虑以下几点:

  1. 旋转中心:图像旋转的轴心点,通常为图像中心。
  2. 旋转角度:旋转的角度,通常以度为单位,正角度表示逆时针旋转。
  3. 新图像尺寸:旋转后图像的新宽度和高度,确保不丢失任何像素。
  4. 插值方法:用于填充旋转后图像中空白区域的像素值。

二、代码实现

复制代码
import cv2
import numpy as np
import math

def rotate_about_center(src, angle_degrees, scale=1.0):
    """
    Rotate an image around its center by a specified angle.

    Parameters:
    - src: numpy.ndarray
        The input image to be rotated.
    - angle_degrees: float
        The rotation angle in degrees. Positive values indicate counter-clockwise rotation.
    - scale: float, optional
        The scaling factor. Default is 1.0 (no scaling).

    Returns:
    - numpy.ndarray
        The rotated image.
    """
    # 确保输入图像是有效的
    if src is None:
        raise ValueError("Input image is None")

    # 获取图像的宽度和高度
    image_height, image_width = src.shape[:2]

    # 将角度转换为弧度
    angle_radians = np.deg2rad(angle_degrees)

    # 计算旋转后的新图像尺寸
    new_width = (abs(np.sin(angle_radians) * image_height) + abs(np.cos(angle_radians) * image_width)) * scale
    new_height = (abs(np.cos(angle_radians) * image_height) + abs(np.sin(angle_radians) * image_width)) * scale

    # 计算旋转矩阵
    # center 是旋转的中心点,位于新图像的中心
    rotation_center = (new_width * 0.5, new_height * 0.5)
    rotation_matrix = cv2.getRotationMatrix2D(rotation_center, angle_degrees, scale)

    # 计算从旧中心到新中心的移动
    translation = np.dot(rotation_matrix, np.array([(new_width - image_width) * 0.5, (new_height - image_height) * 0.5, 0]))

    # 更新旋转矩阵的平移部分
    rotation_matrix[0, 2] += translation[0]
    rotation_matrix[1, 2] += translation[1]

    # 应用旋转
    rotated_img = cv2.warpAffine(src, rotation_matrix, (int(math.ceil(new_width)), int(math.ceil(new_height))), 
                                 borderValue=(255, 255, 255), flags=cv2.INTER_LANCZOS4)

    return rotated_img

三、代码说明

1. 输入检查

  • 检查输入图像是否为空,确保后续操作的有效性。

2. 获取图像尺寸

  • 从输入图像中提取高度和宽度,用于后续计算。

3. 计算新图像尺寸

  • 使用三角函数计算旋转后图像的新宽度和高度。旋转后的图像尺寸需要足够大,以容纳旋转后的所有像素。

4. 生成旋转矩阵

  • 使用 cv2.getRotationMatrix2D 计算旋转矩阵。旋转中心是新图像的中心,旋转角度为输入的角度,缩放因子为 scale

5. 计算平移量

  • 计算从旧图像中心到新图像中心的偏移量。
  • 使用 np.dot 将旋转矩阵应用到偏移量上,计算由于旋转引起的额外平移。
  • 更新旋转矩阵的平移部分,以确保旋转后的图像正确放置在新图像的中心。

6. 应用旋转

  • 使用 cv2.warpAffine 应用旋转矩阵,生成旋转后的图像。
  • 设置边界填充颜色为白色,并使用高质量的插值方法(cv2.INTER_LANCZOS4)。

7. 示例用法

  • 读取输入图像,调用 rotate_about_center 函数旋转图像,并显示和保存结果。

五、旋转结果 ,旋转45°,正数表示逆时针旋转,负数表示顺时针旋转

相关推荐
G皮T3 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼3 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间3 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享3 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾3 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码4 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5894 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien4 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松5 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_15 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf