探索目标检测:边界框与锚框的奥秘

笔者在2022年开始学习目标检测的时候,对各种框的概念那是相当混淆,比如:

  • 中文名词:边界框、锚框、真实框、预测框等
  • 英文名词:BoundingBox、AnchorBox、Ground Truth等

同一个英文名词比如BoundingBox翻译成中文也有多个叫法。下面注重区分这些概念。

一、真实框Ground Truth & 边界框Bounding Box

1️⃣真实框Ground Truth与边界框Bounding Box的定义

目标检测需要识别图片中多个物体的位置与类别。

为了方便模型训练,我们人为地将图片中物体的位置与种类标注出来,这就是真实边界框Ground Truth

  • 「Ground Truth」等价于「Ground Truth Bounding Box(GT BBox)」

边界框Bounding Box则更多的是一种泛指,它可以指代各个类型的框。

2️⃣GT BBox的标注常见于两种形式:
  1. PascalVOC的xml标注文件: ( x 1 , y 1 , x 2 , y 2 ) (x_1, y_1, x_2, y_2) (x1,y1,x2,y2),分别是矩形框左上角、右下角的坐标;
    如下图中的坐标(1, 1)
  2. COCO的json标注文件: ( x , y , w , h ) (x, y, w, h) (x,y,w,h),xy是矩阵框的中心点坐标,wh是矩阵框的宽高;

标注文件中每行表示一个物体,一般是:图片文件名、物体类别、边缘框。


二、边界框的回归 BoundingBox Regression

模型对其「预测框」进行微调,使其接近Ground Truth Bounding Box。

如下图对红色的BBox回归,使其接近绿色的GT Box。


三、锚框Anchor Box

1️⃣Ground Truth Bounding Box与Anchor的区别:

锚框Anchor是算法自动生成出的,GT BBox是人为的标注框。

目前定位精准的目标检测算法还是基于锚框的,即Anchor-based。

2️⃣锚框的使用:

是 在训练集上利用k-means等方法聚类出多个大小宽高不同的锚框 预测:每个锚框中是否含有目标物体 预测:从该锚框到边界框的偏移

3️⃣在目标检测任务中,我们如何选择锚框尺寸?

1)要么设定好锚框的尺寸:

yaml 复制代码
  anchors:
    - [10,13, 16,30, 33,23]  # P3/8
    - [30,61, 62,45, 59,119]  # P4/16
    - [116,90, 156,198, 373,326]  # P5/32

2)要么通过k-means自动生成锚框,比如yolov5默认通过k-means自动生成锚框尺寸

3)作为超参数学习。我还没见过,估计这会产生额外的计算量

4️⃣锚框的标注过程

主流的目标检测算法大多基于锚框Anchor Box,每一个锚框都是一个训练样本。

对于每个锚框,要么标注成背景(负样本),要么关联上一个真实边界框(正样本)。

一张图片可能会产生上万个锚框,其中绝大多数都是背景,即大量的负样本,与之相比,正样本可能只有几十个。


图. 锚框的标注

  • 假设4个目标物体对应着4个GT BBox,模型对每个目标物体各生成9个锚框;
  • 计算每个GT与Anchor之间的IoU值,找到当前最大的IoU值 x 23 x_{23} x23,将锚框关联上BBox_3,由它去预测BBox_3。删去该行该列;
  • 继续找当前最大的IoU值 x 71 x_{71} x71,重复如上操作,删去该行该列;

与BBox关联的锚框作为正样本 ,其他的作为背景就是负样本

PS:Anchor的概念最早出现在Faster RCNN 提出的RPN网络 ,RPN网络的Anchor启发了后面的SSDYolov2算法。


四、额外:召回与排序的概念

召回:将所有"可能的正确结果"返回给排序

排序:会将所有召回的结果进行排序,将最靠前的结果作为最终答案

如果这篇文章对您有些许帮助,请帮忙点个赞👍或收个藏📃。您的支持是我继续创作的动力💪!


不要害怕,不要着急。保持每日的前进☀️与积极的内心❤️,命运总在曲折中馈赠最好的礼物。

相关推荐
掘金安东尼3 分钟前
被权重出卖的“脏数据”:GPT-oss 揭开的 OpenAI 中文训练真相
人工智能
Orange_sparkle14 分钟前
关于dify中http节点下载文件时,文件名不为原始文件名问题解决
人工智能·http·chatgpt·dify
王哈哈^_^23 分钟前
【完整源码+数据集】蓝莓数据集,yolo11蓝莓成熟度检测数据集 3023 张,蓝莓成熟度数据集,目标检测蓝莓识别算法系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·ai·视觉检测
盘古开天166628 分钟前
通俗易懂:YOLO模型原理详解,从零开始理解目标检测
人工智能·yolo·目标检测
OpenBuild.xyz29 分钟前
x402 生态系统:Web3 与 AI 融合的支付新基建
人工智能·web3
嵌入式老牛30 分钟前
OpenCV 第10课 图像处理—阈值处理
图像处理·opencv·计算机视觉
王哈哈^_^35 分钟前
【完整源码+数据集】高空作业数据集,yolo高空作业检测数据集 2076 张,人员高空作业数据集,目标检测高空作业识别系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪·视觉检测
猿小猴子38 分钟前
主流 AI IDE 之一的 Comate IDE 介绍
ide·人工智能·comate
一条数据库42 分钟前
猫狗识别数据集:34,441张高质量标注图像,深度学习二分类任务训练数据集,计算机视觉算法研发,CNN模型训练,图像识别分类,机器学习实践项目完整数据资
深度学习·算法·机器学习
可触的未来,发芽的智生1 小时前
触摸未来2025-11-09:万有力,图论革命
javascript·人工智能·python·程序人生·自然语言处理