自动驾驶-一位从业两年的独特视角

时间简介

2023.03 作为一名大三学生,加入到某量产车企,从事地图匹配研发

2023.07 地图匹配项目交付,参与离线云端建图研发

2023.10 拿到24届校招offer

2024.07 正式入职

2025.01 离线云端建图稳定,开始接触在线车端融图研发

自动驾驶的2.5年

整个时间线大概2年半时间,这两年半,很难想象。在实习入职之前,我并不是清楚自动驾驶是做什么的,我以为我即将进入的公司只是一个独角兽,因为我听说:现在只有独角兽还看acm成绩。我抱着从0开始学习的态度,开始步入职场,加入了一个5人小组。在开始那段时间,直到去车上体验了智驾。我开始对自己所在的行业的终极产品,有了具象的认识。-2.5年,高速自动驾驶已经基本收敛,靠着高精地图+规则规划和控制高速场景,已经能够实现事故率低于人为驾驶。这很大程度依赖于高速场景更加规格化以及图商的大力投入。-1.7年,各家开始提出城区自动驾驶方案。相较于高速场景,城区场景地理现实性变化很大,复杂道路,近乎无限的场景,使得图商难以提供并且维护城区地图。在上海北京利用高精地图实现城区自动驾驶,便是从重地图到轻地图最后的妥协,这是因为在实操过程中发现维护成本过高,于是便出现了两级分化,一些公司采用轻地图的方案,极速扩张,而一些不愿丢弃高精地图包袱的公司,在扩城这件事情上迟迟给不出结果。我司在这个节点给出的方案:众包建图。从高精地图到轻地图,在我个人的业务上的体现,便是从地图匹配转移到了离线云端建图:利用众包数据,在路口匝道等复杂场景建立高精地图,并且通过下游:地图产线将其挂接到高精地图上。我也算是见证了这件事的开始、巅峰以及平稳收尾。很难想象5-6人的小团队,产出了全国百万量级的路口,以所见即所得的原则极大程度上复现了路口的地面元素。在轻地图方案还未实现,行业提出了无图方案,尽管资本宣传着无图也能看,但从从业者视角,大概就是提出了自动驾驶将要开始解决无图方案,由于gpt的崛起,没多久无图方案又被赋予了新的命名,端到端大模型。2024年中,有资源、有能力的企业交付了大模型方法,城区自动驾驶从增量扩张,变为全国覆盖。

waiting for update.

相关推荐
buttonupAI6 小时前
今日Reddit各AI板块高价值讨论精选(2025-12-20)
人工智能
2501_904876486 小时前
2003-2021年上市公司人工智能的采纳程度测算数据(含原始数据+计算结果)
人工智能
曹文杰15190301127 小时前
2025 年大模型背景下应用统计本科 计算机方向 培养方案
python·线性代数·机器学习·学习方法
竣雄7 小时前
计算机视觉:原理、技术与未来展望
人工智能·计算机视觉
救救孩子把7 小时前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL7 小时前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
呆萌很7 小时前
HSV颜色空间过滤
人工智能
roman_日积跬步-终至千里8 小时前
【人工智能导论】02-搜索-高级搜索策略探索篇:从约束满足到博弈搜索
java·前端·人工智能
FL16238631298 小时前
[C#][winform]基于yolov11的淡水鱼种类检测识别系统C#源码+onnx模型+评估指标曲线+精美GUI界面
人工智能·yolo·目标跟踪
爱笑的眼睛118 小时前
从 Seq2Seq 到 Transformer++:深度解构与自构建现代机器翻译核心组件
java·人工智能·python·ai