hadoop存储数据文件原理

Hadoop是一个开源的分布式计算框架,可以用于存储和处理大规模数据集。Hadoop的存储系统基于Hadoop Distributed File System(HDFS),它的主要原理如下:

  1. 数据切块:当用户向HDFS中存储一个文件时,该文件会被切分成固定大小的数据块(默认大小为128MB或256MB)。每个数据块会被复制多份以确保数据的可靠性和容灾性。

  2. 数据分布:数据块会被分布到集群中的不同节点上存储。HDFS采用主从结构,其中一个节点是NameNode(名称节点),负责管理文件系统的命名空间和元数据信息;其他节点是DataNode(数据节点),负责存储实际的数据块。

  3. 副本机制:为了提高数据的可靠性,每个数据块会被复制到多个DataNode上。默认情况下,每个数据块会有3个副本存储在不同的节点上,这样即使某个节点发生故障,数据仍然可以访问。

  4. 容错机制:如果某个节点上的数据块损坏或丢失,HDFS会自动从其他节点上的副本中恢复数据,保证数据的完整性和可靠性。

  5. 读写操作:当用户要读取文件时,客户端会向NameNode请求文件的位置信息,NameNode会返回数据块所在的DataNode列表。客户端直接与DataNode通信获取数据,实现高效的数据读取。

总的来说,Hadoop存储数据文件的实现原理是通过切块、分布、副本机制和容错机制来实现大规模数据的高可靠性和高可用性。通过这些机制,HDFS可以有效地处理大规模数据存储和访问需求。

相关推荐
呆呆小金人2 小时前
SQL入门:正则表达式-高效文本匹配全攻略
大数据·数据库·数据仓库·sql·数据库开发·etl·etl工程师
一棵树73512 小时前
Android OpenGL ES初窥
android·大数据·elasticsearch
西***63473 小时前
从信号处理到智能协同:高清混合矩阵全链路技术拆解,分布式系统十大趋势抢先看
网络·分布式·矩阵
白鲸开源3 小时前
(二)从分层架构到数据湖仓架构:数据仓库分层下的技术架构与举例
大数据·数据库·数据分析
阿维的博客日记3 小时前
从夯到拉的Redis和MySQL双写一致性解决方案排名
redis·分布式·mysql
赵谨言3 小时前
基于Python楼王争霸劳动竞赛数据处理分析
大数据·开发语言·经验分享·python
阿里云大数据AI技术4 小时前
云栖实录 | DataWorks 发布下一代 Data+AI 一体化平台,开启企业智能数据新时代
大数据·人工智能
hunteritself5 小时前
阿里千问上线记忆,Manus 1.5 全栈升级,ChatGPT 将推成人模式!| AI Weekly 10.13-10.19
大数据·人工智能·深度学习·机器学习·chatgpt
像是套了虚弱散6 小时前
DevEco Studio与Git完美搭配:鸿蒙开发的版本控制指南
大数据·elasticsearch·搜索引擎
AI企微观察6 小时前
高频低客单价产品怎么做私域?餐饮/生鲜/零售用社群运营提效37%的私域代运营方案
大数据·产品运营·零售