Softmax回归与单层感知机对比

(1) 输出形式
  • Softmax回归

    输出是一个概率分布,通过Softmax函数将线性得分转换为概率:

    其中 KK 是类别数,模型同时计算所有类别的概率。

  • 单层感知机

    输出是二分类的硬决策(如0/1或±1):

    无概率解释,直接给出分类结果。

(2) 损失函数
  • Softmax回归

    最小化交叉熵损失,鼓励正确类别的概率接近1:

    其中 yi,kyi,k​ 是样本 ii 的真实类别标签(one-hot编码)。

  • 单层感知机

    仅惩罚误分类样本,损失函数为:

    更新规则为(仅对错误样本更新)。

(3) 优化目标
  • Softmax回归

    直接建模多类别的概率分布,通过最大似然估计优化参数。

  • 单层感知机

    寻找一个分离超平面,仅保证线性可分性(对线性不可分数据不收敛)。

(4) 应用场景
  • Softmax回归

    多分类任务(如图像分类、文本分类),需概率输出时。

  • 单层感知机

    二分类任务(如垃圾邮件检测),或作为神经网络的基础组件(但需配合非线性激活函数)。

相关推荐
deephub3 小时前
深入BERT内核:用数学解密掩码语言模型的工作原理
人工智能·深度学习·语言模型·bert·transformer
PKNLP3 小时前
BERT系列模型
人工智能·深度学习·bert
应用市场4 小时前
构建自定义命令行工具 - 打造专属指令体
开发语言·windows·python
东方佑4 小时前
从字符串中提取重复子串的Python算法解析
windows·python·算法
Dfreedom.5 小时前
一文掌握Python四大核心数据结构:变量、结构体、类与枚举
开发语言·数据结构·python·变量·数据类型
一半烟火以谋生5 小时前
Python + Pytest + Allure 自动化测试报告教程
开发语言·python·pytest
格林威5 小时前
偏振相机在半导体制造的领域的应用
人工智能·深度学习·数码相机·计算机视觉·视觉检测·制造
叶子丶苏6 小时前
第八节_PySide6基本窗口控件_按钮类控件(QAbstractButton)
python·pyqt
百锦再6 小时前
对前后端分离与前后端不分离(通常指服务端渲染)的架构进行全方位的对比分析
java·开发语言·python·架构·eclipse·php·maven
来酱何人6 小时前
实时NLP数据处理:流数据的清洗、特征提取与模型推理适配
人工智能·深度学习·分类·nlp·bert