Softmax回归与单层感知机对比

(1) 输出形式
  • Softmax回归

    输出是一个概率分布,通过Softmax函数将线性得分转换为概率:

    其中 KK 是类别数,模型同时计算所有类别的概率。

  • 单层感知机

    输出是二分类的硬决策(如0/1或±1):

    无概率解释,直接给出分类结果。

(2) 损失函数
  • Softmax回归

    最小化交叉熵损失,鼓励正确类别的概率接近1:

    其中 yi,kyi,k​ 是样本 ii 的真实类别标签(one-hot编码)。

  • 单层感知机

    仅惩罚误分类样本,损失函数为:

    更新规则为(仅对错误样本更新)。

(3) 优化目标
  • Softmax回归

    直接建模多类别的概率分布,通过最大似然估计优化参数。

  • 单层感知机

    寻找一个分离超平面,仅保证线性可分性(对线性不可分数据不收敛)。

(4) 应用场景
  • Softmax回归

    多分类任务(如图像分类、文本分类),需概率输出时。

  • 单层感知机

    二分类任务(如垃圾邮件检测),或作为神经网络的基础组件(但需配合非线性激活函数)。

相关推荐
爱喝喜茶爱吃烤冷面的小黑黑20 分钟前
小黑一层层削苹果皮式大模型应用探索:langchain中智能体思考和执行工具的demo
python·langchain·代理模式
&永恒的星河&35 分钟前
基于TarNet、CFRNet与DragonNet的深度因果推断模型全解析
深度学习·因果推断·cfrnet·tarnet·dragonnet
Blossom.1181 小时前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask
Love__Tay2 小时前
【学习笔记】Python金融基础
开发语言·笔记·python·学习·金融
MYH5162 小时前
深度学习在非线性场景中的核心应用领域及向量/张量数据处理案例,结合工业、金融等领域的实际落地场景分析
人工智能·深度学习
Lilith的AI学习日记2 小时前
什么是预训练?深入解读大模型AI的“高考集训”
开发语言·人工智能·深度学习·神经网络·机器学习·ai编程
有风南来3 小时前
算术图片验证码(四则运算)+selenium
自动化测试·python·selenium·算术图片验证码·四则运算验证码·加减乘除图片验证码
wangjinjin1803 小时前
Python Excel 文件处理:openpyxl 与 pandas 库完全指南
开发语言·python
Q同学3 小时前
TORL:工具集成强化学习,让大语言模型学会用代码解题
深度学习·神经网络·llm
禺垣3 小时前
图神经网络(GNN)模型的基本原理
深度学习