FastComposer论文问题与解决

在FastComposer中,跨注意力定位监督(Cross-Attention Localization Supervision) 的实现是通过以下步骤完成的,核心思想是利用分割掩码约束扩散模型中跨注意力图的分布,确保每个主体的特征仅影响图像中对应的区域。具体实现细节如下:

总结

跨注意力定位监督通过分割掩码引导注意力分布 ,本质上是一种隐式的空间约束,使模型在训练中学会将文本token与图像区域精确对应。这一方法在多主体生成中至关重要,解决了传统扩散模型因注意力扩散导致的身份混合问题。

相关推荐
艾莉丝努力练剑3 分钟前
【C++:map和set的使用】C++ map/multimap完全指南:从红黑树原理入门到高频算法实战
大数据·开发语言·c++·人工智能·stl·map
正在走向自律1 小时前
影刀RPA完全指南:从零入门到自动化高手(2/10)
运维·人工智能·自动化·rpa·影刀·rpa自动化工具·ai结合影刀
现在,此刻1 小时前
李沐深度学习笔记D1-什么是深度学习
人工智能·笔记·深度学习
haogexiaole1 小时前
余弦相似度、矩阵分解、深度学习物品的复杂、非线性特征
深度学习·线性代数·矩阵
Hy行者勇哥2 小时前
多源数据抽取与推送模块架构设计
人工智能·个人开发
寒秋丶2 小时前
Milvus:Json字段详解(十)
数据库·人工智能·python·ai·milvus·向量数据库·rag
长桥夜波3 小时前
机器学习日报07
人工智能·机器学习
长桥夜波3 小时前
机器学习日报11
人工智能·机器学习
一个处女座的程序猿6 小时前
LLMs之SLMs:《Small Language Models are the Future of Agentic AI》的翻译与解读
人工智能·自然语言处理·小语言模型·slms
档案宝档案管理8 小时前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理