spark转换算子

在 Apache Spark 中,转换算子(Transformation)是用于对 RDD(弹性分布式数据集)进行转换操作的函数。这些操作是惰性的,即在调用转换算子时,Spark 并不会立即执行计算,而是记录下转换操作的轨迹,等待行动算子触发时才真正执行。

以下是一些常见的 Spark 转换算子及其功能:

单值类型转换算子

  • map(func) :对 RDD 中的每个元素应用函数 func,返回一个新的 RDD。
    • 示例:将一个包含整数的 RDD 中的每个元素乘以 2。
  • flatMap(func) :类似于 map,但每个输入元素可以映射为多个输出元素,返回一个扁平化的新 RDD。
    • 示例:将文本行分割为单词。
  • filter(func) :根据函数 func 的返回值(布尔值)筛选 RDD 中的元素,返回一个包含满足条件元素的新 RDD。
    • 示例:从一个包含整数的 RDD 中筛选出偶数。
  • distinct():对 RDD 中的元素进行去重操作。
  • glom():将 RDD 中的每个分区变成一个数组。

双值类型转换算子

  • union(otherRDD):对两个 RDD 进行并集操作。
  • intersection(otherRDD):对两个 RDD 进行交集操作。
  • subtract(otherRDD):对两个 RDD 进行差集操作。
  • zip(otherRDD):将两个 RDD 中的元素按索引配对,形成键值对。

键值对类型转换算子

  • groupByKey() :对 RDD 中的键值对,按照键进行分组,将相同的键对应的值聚合到一起。
    • 示例:统计每个单词的出现次数。
  • reduceByKey(func) :对 RDD 中的键值对,按照键进行分组后,使用函数 func 对每个键对应的值进行聚合操作。
    • 示例:计算每个单词的出现次数总和。
  • combineByKey(createCombiner, mergeValue, mergeCombiners):对 RDD 中的键值对进行更复杂的聚合操作。
  • partitionBy(partitioner):根据指定的分区器对 RDD 中的键值对进行分区。

其他转换算子

  • coalesce(numPartitions):根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率。
  • repartition(numPartitions):对 RDD 进行重新分区。
  • sortby(keyfunc):对 RDD 中的元素进行排序。

这些转换算子是 Spark 数据处理流程的核心,通过合理选择和组合算子,可以高效地处理大规模数据。

相关推荐
工程师小星星1 小时前
消息队列Apache Kafka教程
分布式·kafka·apache
递归尽头是星辰2 小时前
Spark核心技术解析:从RDD到Dataset的演进与实践
大数据·rdd·dataset·spark核心·spark编程模型
风跟我说过她3 小时前
Hadoop HA (高可用) 配置与操作指南
大数据·hadoop·分布式·zookeeper·centos
沧澜sincerely3 小时前
WSL2搭建Hadoop伪分布式环境
大数据·hadoop·搜索引擎
还是大剑师兰特4 小时前
Kafka 面试题及详细答案100道(66-80)-- 运维与部署
分布式·kafka·大剑师·kafka面试题
计算机编程小央姐10 小时前
【Spark+Hive+hadoop】基于spark+hadoop基于大数据的人口普查收入数据分析与可视化系统
大数据·hadoop·数据挖掘·数据分析·spark·课程设计
鲲志说11 小时前
数据洪流时代,如何挑选一款面向未来的时序数据库?IoTDB 的答案
大数据·数据库·apache·时序数据库·iotdb
没有bug.的程序员11 小时前
MVCC(多版本并发控制):InnoDB 高并发的核心技术
java·大数据·数据库·mysql·mvcc
nju_spy13 小时前
南京大学 - 复杂结构数据挖掘(一)
大数据·人工智能·机器学习·数据挖掘·数据清洗·南京大学·相似性分析
哈哈很哈哈13 小时前
Flink SlotSharingGroup 机制详解
java·大数据·flink