ETL介绍

(一)ETL介绍

"ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。

在Transform的过程中,我们经常会做数据清洗这个操作。它是指对采集到的原始数据进行预处理,以去除错误、重复、不完整或不一致的数据,使数据符合分析要求的过程。它在整个数据分析和数据处理流程中处于非常重要的位置,因为数据质量的好坏直接影响到后续分析结果的准确性和可靠性。

清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。

(二)需求分析

我们有去除日志中字段个数小于等于11的日志。

(1)输入数据

(2)期望输出数据:每行字段长度都大于11。

需要在Map阶段对输入的数据根据规则进行过滤清洗,并不需要进行汇总。

(三)思路分析

map阶段:按行读入内容,对内容进行检查,如果字段的个数少于等于11,就删除这条日志(不保留)去除日志中字段个数小于等于11的日志内容。

对于map函数来说,它的输入参数是:<偏移量,第一行的内容>

<偏移量,每一行的内容> → <刷选后的没一行的内容,null>

对于reduce函数来说,它的输入参数是:<刷选后的每一行的内容,[null,null,...]>,对于我们的需求来说,并不需要这个阶段: 没有汇总的需求,直接使用Map的结果。

(四)实现代码

在之前的项目的基础之上,重写去写一个包,并创建两个类:WebLogMapper和WebLogDriver类。

(1)编写WebLogMapper类

package com.root.mapreduce.weblog;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class WebLogMapper extends Mapper<LongWritable, Text, Text, NullWritable>{

@Override

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

// 1. 获取一行数据,使用空格进行拆分,判断是否有8个字段

String[] fields = value.toString().split(" ");

if (fields.length > 7) {

// 这条数据是有意义的,保留

System.out.println(fields[0]);

context.write(value, NullWritable.get());

}

}

}

代码说明:NullWritable就等价于null,context.write(value,NullWritable.get())就表示只有key,没有value。

(2)编写WebLogDriver类

package com.root.mapreduce.weblog;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WebLogDriver {

public static void main(String[] args) throws Exception {

// 1 获取job信息

Configuration conf = new Configuration();

Job job = Job.getInstance(conf);

// 2 加载jar包

job.setJarByClass(LogDriver.class);

// 3 关联map

job.setMapperClass(WebLogMapper.class);

// 4 设置最终输出类型

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(NullWritable.class);

// 设置reducetask个数为0

job.setNumReduceTasks(0);

// 5 设置输入和输出路径

FileInputFormat.setInputPaths(job, new Path("E:\\vm\\web.log"));

FileOutputFormat.setOutputPath(job, new Path("E:\\vm\\ouput2"));

// 6 提交

boolean b = job.waitForCompletion(true);

System.exit(b ? 0 : 1);

}

}

代码说明:reduceTask为0,表示没有reduce阶段,程序会根据Map函数的结果把内容输出。最终输出的文件个数与mapperTask的数量一致。

相关推荐
Lansonli1 天前
大数据Spark(六十七):Transformation转换算子distinct和mapValues
大数据·分布式·spark
weixin_525936332 天前
金融大数据处理与分析
hadoop·python·hdfs·金融·数据分析·spark·matplotlib
geilip2 天前
知识体系_scala_利用scala和spark构建数据应用
开发语言·spark·scala
孟意昶2 天前
Spark专题-第三部分:性能监控与实战优化(3)-数据倾斜优化
大数据·分布式·sql·spark
Lansonli2 天前
大数据Spark(六十六):Transformation转换算子sample、sortBy和sortByKey
大数据·分布式·spark
IT毕设梦工厂3 天前
大数据毕业设计选题推荐-基于大数据的人口普查收入数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
计算机源码社3 天前
基于Hadoop的车辆二氧化碳排放量分析与可视化系统|基于Spark的车辆排放量实时监控与预测系统|基于数据挖掘的汽车排放源识别与减排策略系统
大数据·hadoop·机器学习·数据挖掘·spark·毕业设计·课程设计
励志成为糕手4 天前
Spark Shuffle:分布式计算的数据重分布艺术
大数据·分布式·spark·性能调优·数据倾斜
DashingGuy4 天前
Spark的Broadcast Join以及其它的Join策略
大数据·spark
计算机编程小央姐4 天前
大数据工程师认证项目:汽车之家数据分析系统,Hadoop分布式存储+Spark计算引擎
大数据·hadoop·分布式·数据分析·spark·汽车·课程设计