【Survival Analysis】【机器学习】【3】deepseek流程图

提交论文的时候,有的时候需要提供code 的流程图。

方法:

1 这边是直接把写好的代码放到大模型,,推荐使用deepseek.

2 然后大模型总结一下

3 根据总结出来的结果,使用proceeson, 或者ppt 美化一下

下图为deepseek的效果,其它几个都没办法用。

主要测试:豆包,文言一心,以及Kimi,以及Deepseek,通义千问

通义 - 你的实用AI助手

复制代码
┌───────────────────────────────────────────────────────────────────────────────┐
│                    Clinical Data Preprocessing Pipeline                       │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            1. Load Raw Data                                   │
│                                                                               │
│  - Read CSV file                                                            │
│  - Remove completely blank rows                                              │
│  - Print initial data dimensions                                             │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            2. Validate Data                                   │
│                                                                               │
│  - Check for empty DataFrame                                                 │
│  - Verify target column exists                                               │
│  - Validate target values (0/1)                                              │
│  - Check for missing clinical features                                       │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            3. Data Cleaning                                  │
│                                                                               │
│  - Select predefined clinical features                                       │
│  - Fill missing values:                                                     │
│    * Categorical: mode imputation                                           │
│    * Numerical: mean imputation                                             │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            4. Feature Engineering                            │
│                                                                               │
│  - One-Hot Encoding for multi-label features (lesion_location)               │
│  - Label Encoding for categorical variables (gender, pathological_type, etc.)│
│  - Print final feature count                                                 │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            5. Feature Correlation Analysis                   │
│                                                                               │
│  - Calculate correlation matrix                                              │
│  - Select features with correlation > threshold (0.15)                       │
│  - Visualize significant features' correlation                               │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            6. Save Processed Data                            │
│                                                                               │
│  - Create final dataset with significant features + target                    │
│  - Save to CSV file                                                          │
│  - Print final dataset dimensions                                            │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            Error Handling                                    │
│                                                                               │
│  - FileNotFoundError: Missing input file                                     │
│  - ValueError: Data validation failures                                      │
│  - General Exception: Other processing errors                                │
└───────────────────────────────────────────────────────────────────────────────┘
相关推荐
l1t14 分钟前
张泽鹏先生手搓的纯ANSI处理UTF-8与美团龙猫调用expat库读取Excel xml对比测试
xml·人工智能·excel·utf8·expat
THMAIL16 分钟前
量化基金从小白到大师 - 金融数据获取大全:从免费API到Tick级数据实战指南
人工智能·python·深度学习·算法·机器学习·金融·kafka
zzywxc78716 分钟前
AI在金融、医疗、教育、制造业等领域的落地案例(含代码、流程图、Prompt示例与图表)
人工智能·spring·机器学习·金融·数据挖掘·prompt·流程图
代码欢乐豆1 小时前
scikit-learn零基础配置(含python、anaconda)
python·机器学习·scikit-learn
周末程序猿1 小时前
谈谈Vibe编程(氛围编程)
人工智能
水印云2 小时前
AI配音工具哪个好用?7款热门配音软件推荐指南!
人工智能·语音识别
Luke Ewin2 小时前
FunASR的Java实现Paraformer实时语音识别 | 一款无需联网的本地实时字幕软件
java·人工智能·语音识别·asr·funasr·paraformer·sensevoice
先做个垃圾出来………2 小时前
PyTorch 模型文件介绍
人工智能·pytorch·python
浅醉樱花雨2 小时前
vosk语音识别实战
人工智能·python·语音识别·asr·vosk
IoT砖家涂拉拉2 小时前
从“找新家”到“走向全球”,布尔云携手涂鸦智能开启机器人新冒险
人工智能·机器人·ai助手·ai智能体·ai机器人