【Survival Analysis】【机器学习】【3】deepseek流程图

提交论文的时候,有的时候需要提供code 的流程图。

方法:

1 这边是直接把写好的代码放到大模型,,推荐使用deepseek.

2 然后大模型总结一下

3 根据总结出来的结果,使用proceeson, 或者ppt 美化一下

下图为deepseek的效果,其它几个都没办法用。

主要测试:豆包,文言一心,以及Kimi,以及Deepseek,通义千问

通义 - 你的实用AI助手

复制代码
┌───────────────────────────────────────────────────────────────────────────────┐
│                    Clinical Data Preprocessing Pipeline                       │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            1. Load Raw Data                                   │
│                                                                               │
│  - Read CSV file                                                            │
│  - Remove completely blank rows                                              │
│  - Print initial data dimensions                                             │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            2. Validate Data                                   │
│                                                                               │
│  - Check for empty DataFrame                                                 │
│  - Verify target column exists                                               │
│  - Validate target values (0/1)                                              │
│  - Check for missing clinical features                                       │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            3. Data Cleaning                                  │
│                                                                               │
│  - Select predefined clinical features                                       │
│  - Fill missing values:                                                     │
│    * Categorical: mode imputation                                           │
│    * Numerical: mean imputation                                             │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            4. Feature Engineering                            │
│                                                                               │
│  - One-Hot Encoding for multi-label features (lesion_location)               │
│  - Label Encoding for categorical variables (gender, pathological_type, etc.)│
│  - Print final feature count                                                 │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            5. Feature Correlation Analysis                   │
│                                                                               │
│  - Calculate correlation matrix                                              │
│  - Select features with correlation > threshold (0.15)                       │
│  - Visualize significant features' correlation                               │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            6. Save Processed Data                            │
│                                                                               │
│  - Create final dataset with significant features + target                    │
│  - Save to CSV file                                                          │
│  - Print final dataset dimensions                                            │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            Error Handling                                    │
│                                                                               │
│  - FileNotFoundError: Missing input file                                     │
│  - ValueError: Data validation failures                                      │
│  - General Exception: Other processing errors                                │
└───────────────────────────────────────────────────────────────────────────────┘
相关推荐
若谷老师8 分钟前
21.WSL中部署gnina分子对接程序ds
linux·人工智能·ubuntu·卷积神经网络·gnina·smina
诗词在线9 分钟前
孟浩然诗作数字化深度实战:诗词在线的意象挖掘、检索优化与多场景部署
大数据·人工智能·算法
冬奇Lab30 分钟前
一天一个开源项目(第23篇):PageLM - 开源 AI 教育平台,把学习材料变成互动资源
人工智能·开源
汐汐咯30 分钟前
残差块学习笔记
人工智能
式51631 分钟前
深度学习常见问题
人工智能·深度学习
天竺鼠不该去劝架44 分钟前
RPA 平台选型指南(2026):金智维 vs 来也RPA vs 艺赛旗 vs 阿里云 RPA 深度对比
大数据·数据库·人工智能
aircrushin1 小时前
具身智能开源生态:小米机器人VLA模型如何推动物理AI产业化?
人工智能·机器人
DN20201 小时前
AI销售:从不迟到早退,永远秒回,您的忠实员工
人工智能·python
人工智能AI技术1 小时前
手机就是你的AI实验室:AutoGLM开源实战,用智谱GLM-4.7控制手机完成自动打卡
人工智能