【Survival Analysis】【机器学习】【3】deepseek流程图

提交论文的时候,有的时候需要提供code 的流程图。

方法:

1 这边是直接把写好的代码放到大模型,,推荐使用deepseek.

2 然后大模型总结一下

3 根据总结出来的结果,使用proceeson, 或者ppt 美化一下

下图为deepseek的效果,其它几个都没办法用。

主要测试:豆包,文言一心,以及Kimi,以及Deepseek,通义千问

通义 - 你的实用AI助手

复制代码
┌───────────────────────────────────────────────────────────────────────────────┐
│                    Clinical Data Preprocessing Pipeline                       │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            1. Load Raw Data                                   │
│                                                                               │
│  - Read CSV file                                                            │
│  - Remove completely blank rows                                              │
│  - Print initial data dimensions                                             │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            2. Validate Data                                   │
│                                                                               │
│  - Check for empty DataFrame                                                 │
│  - Verify target column exists                                               │
│  - Validate target values (0/1)                                              │
│  - Check for missing clinical features                                       │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            3. Data Cleaning                                  │
│                                                                               │
│  - Select predefined clinical features                                       │
│  - Fill missing values:                                                     │
│    * Categorical: mode imputation                                           │
│    * Numerical: mean imputation                                             │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            4. Feature Engineering                            │
│                                                                               │
│  - One-Hot Encoding for multi-label features (lesion_location)               │
│  - Label Encoding for categorical variables (gender, pathological_type, etc.)│
│  - Print final feature count                                                 │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            5. Feature Correlation Analysis                   │
│                                                                               │
│  - Calculate correlation matrix                                              │
│  - Select features with correlation > threshold (0.15)                       │
│  - Visualize significant features' correlation                               │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            6. Save Processed Data                            │
│                                                                               │
│  - Create final dataset with significant features + target                    │
│  - Save to CSV file                                                          │
│  - Print final dataset dimensions                                            │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            Error Handling                                    │
│                                                                               │
│  - FileNotFoundError: Missing input file                                     │
│  - ValueError: Data validation failures                                      │
│  - General Exception: Other processing errors                                │
└───────────────────────────────────────────────────────────────────────────────┘
相关推荐
明月照山海-5 小时前
机器学习周报三十三
人工智能·机器学习
传说故事5 小时前
【论文自动阅读】视频生成模型的Inference-time物理对齐 with Latent World Model
人工智能·深度学习·音视频·视频生成
半臻(火白)5 小时前
Clawbot:重新定义AI的「行动派」革命
人工智能
造夢先森5 小时前
Clawdbot(OpenClaw)安装部署教程
人工智能·微服务·云原生
攻城狮7号5 小时前
宇树 开源 UnifoLM-VLA-0 大模型:给人形机器人装上通用的“直觉大脑”
人工智能·机器人·具身智能·宇树科技·unifolm-vla-0
aihuangwu5 小时前
ChatGPT和Gemini图表怎么导出
人工智能·ai·chatgpt·deepseek·ds随心转
Bits to Atoms5 小时前
宇树G1语音助手完整开发指南(下)——从零构建智能知识库对话系统
人工智能·机器人·音视频·语音识别
Katecat996635 小时前
古巽伽罗语字符识别与分类_Cascade-Mask-RCNN_RegNetX-400MF实现
人工智能·目标跟踪
说文科技5 小时前
大模型项目实战之dpo微调
人工智能·算法
周杰伦_Jay6 小时前
【Mac 上命令行安装 Claude Code】(Claude 的终端版 AI 编程助手)完整指南
人工智能·macos·claude code