【Survival Analysis】【机器学习】【3】deepseek流程图

提交论文的时候,有的时候需要提供code 的流程图。

方法:

1 这边是直接把写好的代码放到大模型,,推荐使用deepseek.

2 然后大模型总结一下

3 根据总结出来的结果,使用proceeson, 或者ppt 美化一下

下图为deepseek的效果,其它几个都没办法用。

主要测试:豆包,文言一心,以及Kimi,以及Deepseek,通义千问

通义 - 你的实用AI助手

复制代码
┌───────────────────────────────────────────────────────────────────────────────┐
│                    Clinical Data Preprocessing Pipeline                       │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            1. Load Raw Data                                   │
│                                                                               │
│  - Read CSV file                                                            │
│  - Remove completely blank rows                                              │
│  - Print initial data dimensions                                             │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            2. Validate Data                                   │
│                                                                               │
│  - Check for empty DataFrame                                                 │
│  - Verify target column exists                                               │
│  - Validate target values (0/1)                                              │
│  - Check for missing clinical features                                       │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            3. Data Cleaning                                  │
│                                                                               │
│  - Select predefined clinical features                                       │
│  - Fill missing values:                                                     │
│    * Categorical: mode imputation                                           │
│    * Numerical: mean imputation                                             │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            4. Feature Engineering                            │
│                                                                               │
│  - One-Hot Encoding for multi-label features (lesion_location)               │
│  - Label Encoding for categorical variables (gender, pathological_type, etc.)│
│  - Print final feature count                                                 │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            5. Feature Correlation Analysis                   │
│                                                                               │
│  - Calculate correlation matrix                                              │
│  - Select features with correlation > threshold (0.15)                       │
│  - Visualize significant features' correlation                               │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            6. Save Processed Data                            │
│                                                                               │
│  - Create final dataset with significant features + target                    │
│  - Save to CSV file                                                          │
│  - Print final dataset dimensions                                            │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            Error Handling                                    │
│                                                                               │
│  - FileNotFoundError: Missing input file                                     │
│  - ValueError: Data validation failures                                      │
│  - General Exception: Other processing errors                                │
└───────────────────────────────────────────────────────────────────────────────┘
相关推荐
那个村的李富贵5 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
腾讯云开发者6 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR6 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky7 小时前
大模型生成PPT的技术原理
人工智能
禁默8 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切8 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒8 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站8 小时前
Clawdbot(现名Moltbot)-现状分析
人工智能
那个村的李富贵8 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
二十雨辰8 小时前
[python]-AI大模型
开发语言·人工智能·python