【Survival Analysis】【机器学习】【3】deepseek流程图

提交论文的时候,有的时候需要提供code 的流程图。

方法:

1 这边是直接把写好的代码放到大模型,,推荐使用deepseek.

2 然后大模型总结一下

3 根据总结出来的结果,使用proceeson, 或者ppt 美化一下

下图为deepseek的效果,其它几个都没办法用。

主要测试:豆包,文言一心,以及Kimi,以及Deepseek,通义千问

通义 - 你的实用AI助手

复制代码
┌───────────────────────────────────────────────────────────────────────────────┐
│                    Clinical Data Preprocessing Pipeline                       │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            1. Load Raw Data                                   │
│                                                                               │
│  - Read CSV file                                                            │
│  - Remove completely blank rows                                              │
│  - Print initial data dimensions                                             │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            2. Validate Data                                   │
│                                                                               │
│  - Check for empty DataFrame                                                 │
│  - Verify target column exists                                               │
│  - Validate target values (0/1)                                              │
│  - Check for missing clinical features                                       │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            3. Data Cleaning                                  │
│                                                                               │
│  - Select predefined clinical features                                       │
│  - Fill missing values:                                                     │
│    * Categorical: mode imputation                                           │
│    * Numerical: mean imputation                                             │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            4. Feature Engineering                            │
│                                                                               │
│  - One-Hot Encoding for multi-label features (lesion_location)               │
│  - Label Encoding for categorical variables (gender, pathological_type, etc.)│
│  - Print final feature count                                                 │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            5. Feature Correlation Analysis                   │
│                                                                               │
│  - Calculate correlation matrix                                              │
│  - Select features with correlation > threshold (0.15)                       │
│  - Visualize significant features' correlation                               │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            6. Save Processed Data                            │
│                                                                               │
│  - Create final dataset with significant features + target                    │
│  - Save to CSV file                                                          │
│  - Print final dataset dimensions                                            │
└───────────────────────────────────────────────────────────────────────────────┘
                                      │
                                      ▼
┌───────────────────────────────────────────────────────────────────────────────┐
│                            Error Handling                                    │
│                                                                               │
│  - FileNotFoundError: Missing input file                                     │
│  - ValueError: Data validation failures                                      │
│  - General Exception: Other processing errors                                │
└───────────────────────────────────────────────────────────────────────────────┘
相关推荐
yhdata3 分钟前
2026年镍合金线行业产业链分析报告
大数据·人工智能
jiguanghover7 分钟前
Langgraph_通过playwright mcp执行自动化
人工智能·agent
清 澜9 分钟前
大模型扫盲式面试知识复习 (二)
人工智能·面试·职场和发展·大模型
kevin 111 分钟前
财务审核场景全覆盖,AI智能审核,自然语言配置规则
人工智能
jieshenai13 分钟前
BERT_Experiment_Template 多种模型与数据集加载,训练、参数保存与评估,适合论文实验的代码模板项目
人工智能·深度学习·bert
蝎蟹居26 分钟前
GBT 4706.1-2024逐句解读系列(25) 第7.5条款:不同电压功率需清晰明确
人工智能·单片机·嵌入式硬件·物联网·安全
Mintopia27 分钟前
😎 HTTP/2 中的 HPACK 压缩原理全揭秘
前端·人工智能·aigc
阿里云大数据AI技术32 分钟前
EMR AI 助手再升级:支持 Serverless StarRocks
人工智能
bing.shao34 分钟前
golang 做AI任务链的优势和场景
开发语言·人工智能·golang
知乎的哥廷根数学学派34 分钟前
基于多物理约束融合与故障特征频率建模的滚动轴承智能退化趋势分析(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习