1.Fibonacci数列
题目链接: Fibonacci数列_牛客题霸_牛客网
解题思路:
求斐波那契数列的过程中,判断⼀下:何时n会在两个fib数之间。
#include <bits/stdc++.h>
using namespace std;
#define int long long
signed main()
{
int n;
cin >> n;
int a = 0 , b = 1 , c = 1;
while(n > c)
{
a = b;
b = c;
c = a + b;
}
cout << min(c - n , n - b) << endl;
return 0;
}
2.单词搜索
题目链接: 单词搜索_牛客题霸_牛客网
解题思路:简单的深度搜索题(dfs)
class Solution
{
int n, m;
bool vis[101][101] = {0};
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
public:
bool exist(vector<string> &board, string word)
{
m = board.size(), n = board[0].size();
for (int i = 0; i < m; i++)
{
for (int j = 0; j < n; j++)
{
if (board[i][j] == word[0])
{
if (dfs(board, i, j, word, 0))
return true;
}
}
}
return false;
}
bool dfs(vector<string> &board, int i, int j, string &word, int pos)
{
if (pos == word.size() - 1)
return true;
vis[i][j] = true;
for (int k = 0; k < 4; k++)
{
int a = i + dx[k], b = dy[k] + j;
if (a >= 0 && a < m && b >= 0 && b < n && !vis[a][b] && board[a][b] == word[pos + 1])
{
if (dfs(board, a, b, word, pos + 1))
return true;
}
}
vis[i][j] = false;
return false;
}
};
3.杨辉三角
题目链接:
解题思路:最基础的dp模型,按照规律模拟出来杨辉三⻆即可。
#include <bits/stdc++.h>
using namespace std;
#define int long long
int dp[31][31];
signed main()
{
int n;
cin >> n;
dp[1][1] = 1;
for(int i = 2;i <= n;i ++)
{
for(int j = 1;j <= n;j ++)
{
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
for(int i = 1;i <= n;i ++)
{
for(int j = 1;j <= n;j ++)
{
printf("%5d", dp[i][j]);
}
printf("\n");
}
return 0;
}