本篇是一个补充知识点, 目的是为了下篇的后台管理系统中, 菜单权限的接口进行铺垫一下.
同时也是做个笔记, 因为在很多地方都会用这种 "树结构" 来实现很多权限, 层级, 菜单的处理哈.
在表设计层面通常是通过 id
和pid
来体现层级关系.
- id 表示表的每行菜单的唯一标识
- pid 标识这一行的
上级菜单id
是谁, 这个 id 一定是在 所有 id 中的 - 假设我们约定,
pid = 0
是顶级菜单
表结构设计
于是表设计就可以这样:
sql
-- 菜单树的表结构
drop table if exists test_tree;
create table test_tree (
id int auto_increment primary key comment '自增id'
, pid int not null default 0 comment '父级id'
, name varchar(100) not null comment '名称'
, orders int not null default 0 comment '排序号'
);
-- 插入数据
INSERT INTO test_tree (id, pid, name, orders) VALUES
(1, 0, 'A1', 10),
(2, 1, 'A1-1', 20),
(3, 1, 'A1-2', 20),
(4, 3, 'A1-2-1', 30),
(5, 3, 'A1-2-2', 30),
(6, 0, 'B1', 10),
(7, 6, 'B1-1', 20),
(8, 7, 'B1-1-1', 30),
(9, 8, 'B1-1-1-1', 40);
-- 递归查询某个 id 及其子节点
WITH RECURSIVE subordinates AS (
SELECT id, pid, name, orders
FROM test_tree
WHERE ID = 1
UNION ALL
SELECT t.ID, t.PID, t.Name, t.`Orders`
FROM test_tree t
INNER JOIN subordinates s ON t.PID = s.ID
)
SELECT * FROM subordinates;
id, pid, orders
1 0 A1 10
2 1 A1-1 20
3 1 A1-2 20
4 3 A1-2-1 30
5 3 A1-2-2 30
拼接为 json 树
目的是为了方便前端渲染层级菜单, 通过 children
来进行拓展.
Python版
python
from typing import List, Dict
def build_tree(menu_items: List[Dict], id='id', pid='pid') -> List[Dict]:
"""将菜单层级数据的 id, pid 平铺为 json 方式的"""
menu_dict = { menu.get(id): menu for menu in menu_items }
tree = []
for menu in menu_items:
if not menu.get(pid):
tree.append(menu) # 根节点
else:
# 非根节点, 将其添加到父节点的 child 中
parent_menu = menu_dict.get(menu[pid])
print(parent_menu)
if parent_menu:
if 'children' not in parent_menu:
parent_menu['children'] = []
parent_menu['children'].append(menu)
return tree
Go版
go
package main
import (
"encoding/json"
"fmt"
)
type Menu struct {
ID int `json:"id"`
PID int `json:"parent_id"`
Name string `json:"name"`
Order int `json:"order"`
Children []*Menu `json:"children"`
}
func BuildMenuTree(items []*Menu) []*Menu {
nodeMap := make(map[int]*Menu)
for _, node := range items {
nodeMap[node.ID] = node
}
var tree []*Menu
for _, node := range items {
// 已约定 pid = 0 则为顶层节点
if node.PID == 0 {
tree = append(tree, node)
} else {
// 找到父节点,将其挂载到其 children 中
if parent, exist := nodeMap[node.PID]; exist {
parent.Children = append(parent.Children, node)
}
}
}
return tree
}
Go 也是一样的逻辑, 只是代码编写上要复杂一点, 原因在于,
- 它是静态编译型语言, 要确定类型, 同时结构体和 json 之间需要用到反射
reflect
- Go 中数组是
值类型
, 切片是对它的引用, 在处理中需要用到指针
, 不然会进行节点重复创建
go
// 继续上面的测试
func main() {
items := []*Menu{
{ID: 1, PID: 0, Name: "A1", Order: 10},
{ID: 2, PID: 1, Name: "A1-1", Order: 20},
{ID: 3, PID: 1, Name: "A1-2", Order: 20},
{ID: 4, PID: 3, Name: "A1-2-1", Order: 30},
{ID: 5, PID: 3, Name: "A1-2-2", Order: 30},
{ID: 6, PID: 0, Name: "B1", Order: 10},
{ID: 7, PID: 6, Name: "B1-1", Order: 20},
{ID: 8, PID: 7, Name: "B1-1-1", Order: 30},
{ID: 9, PID: 8, Name: "B1-1-1-1", Order: 40},
}
tree := BuildMenuTree(items)
// 将树结构体 (指针, 切片, 数组, map 等) 转为 json
// prefix = "" 表示不用加前缀; indent = " " 表示每层缩进2空格
jsonData, err := json.MarshalIndent(tree, "", " ")
if err != nil {
fmt.Println("转换j son 失败: ", err)
return
}
fmt.Println(string(jsonData))
}
输出:
json
[
{
"id": 1,
"parent_id": 0,
"name": "A1",
"order": 10,
"children": [
{
"id": 2,
"parent_id": 1,
"name": "A1-1",
"order": 20,
"children": null
},
{
"id": 3,
"parent_id": 1,
"name": "A1-2",
"order": 20,
"children": [
{
"id": 4,
"parent_id": 3,
"name": "A1-2-1",
"order": 30,
"children": null
},
{
"id": 5,
"parent_id": 3,
"name": "A1-2-2",
"order": 30,
"children": null
}
]
}
]
},
{
"id": 6,
"parent_id": 0,
"name": "B1",
"order": 10,
"children": [
{
"id": 7,
"parent_id": 6,
"name": "B1-1",
"order": 20,
"children": [
{
"id": 8,
"parent_id": 7,
"name": "B1-1-1",
"order": 30,
"children": [
{
"id": 9,
"parent_id": 8,
"name": "B1-1-1-1",
"order": 40,
"children": null
}
]
}
]
}
]
}
]
用的频率还是蛮高的, 但凡涉及这种树的结构, 基本都会用到这种 id + parent_id
的方式, 同时也是 SQL 的一个必备知识点, 即 自关联 + 子查询
, 这个技能必须要拿下. 真的是自从有了 AI , 似乎理解知识点都是轻而易举呢.