电商双11美妆数据分析实验总结

数据分析方法与应用

数据分类与绘图

数据分类方法:通过指定列名和函数(如SUM)来分类数据,确保数据集中包含所需列,否则会报错。

嵌套柱形图应用:嵌套柱形图用于展示多层次分类的数据,如按店名和化妆品类别分类,明确指定HUE参数以区分不同层次。

数据可视化:通过绘图可以直观地看到不同类别的销售量和销售额,帮助分析和决策。

销售数据与消费者偏好

销售数据分析:分析了不同类别(如清洁、补水等)的销售数据,发现男士主要关注清洁和补水类产品,女士则关注更多类别。

消费者偏好:通过饼图和柱形图展示了男士和女士在美妆产品上的消费偏好,男士偏好清洁和补水类产品,女士则更为多样化。

销售量与销售额对比:男士专用产品的销售量占18.16%,但销售额仅占10%左右,显示出女士在美妆产品上的消费能力更强。


时间因素对销售的影响

销售高峰期分析:通过折线图分析了双11期间的销售数据,发现销售量在11月9日达到高峰,商家应在高峰期前安排促销活动。

销售额变化:销售额在11月10日达到顶峰,随后骤然下降,显示出时间因素对销售额的显著影响。


评论数据分析

评论数与销售数据结合:通过绘制画布和分析评论数据,结合销售数据,可以更全面地了解消费者行为和产品受欢迎程度。

总结

数据分析的重要性:通过数据分析可以发现消费者偏好和市场趋势,帮助企业和个人做出更明智的决策。

数据可视化工具的应用:使用嵌套柱形图、饼图和折线图等工具可以直观展示数据,便于分析和理解。

多维度分析:结合销售量、销售额和评论数等多维度数据,可以更全面地评估市场表现和产品竞争力。

数据处理步骤:初步了解数据后,需要进行数据预处理,主要包括处理缺失值、重复值和异常值。

数据分析流程:数据预处理完成后,进行数据可视化,并根据可视化的结果进行数据分析

相关推荐
陈敬雷-充电了么-CEO兼CTO1 小时前
推荐算法系统系列>推荐数据仓库集市的ETL数据处理
大数据·数据库·数据仓库·数据挖掘·数据分析·etl·推荐算法
杨超越luckly2 小时前
ArcGISPro应用指南:ArcGISPro制图全流程详解
arcgis·信息可视化·gis·制图·arcgispro
麻雀无能为力3 小时前
CAU数据挖掘 支持向量机
人工智能·支持向量机·数据挖掘·中国农业大学计算机
马特说4 小时前
React金融数据分析应用性能优化实战:借助AI辅助解决18万数据量栈溢出Bug
react.js·金融·数据分析
GIS之路6 小时前
GeoTools 结合 OpenLayers 实现属性查询(二)
前端·信息可视化
isNotNullX6 小时前
什么是数据分析?常见方法全解析
大数据·数据库·数据仓库·人工智能·数据分析
DataGear18 小时前
如何在DataGear 5.4.1 中快速制作SQL服务端分页的数据表格看板
javascript·数据库·sql·信息可视化·数据分析·echarts·数据可视化
王小王-12320 小时前
基于Hadoop的京东厨具商品数据分析及商品价格预测系统的设计与实现
hadoop·数据分析·京东厨具·厨具分析·商品分析
可观测性用观测云21 小时前
Cloudflare 日志采集和分析最佳实践
数据分析
真智AI1 天前
AI智能体时代来临:数据分析的变革与自动化之路
人工智能·数据分析·自动化