电商双11美妆数据分析实验总结

数据分析方法与应用

数据分类与绘图

数据分类方法:通过指定列名和函数(如SUM)来分类数据,确保数据集中包含所需列,否则会报错。

嵌套柱形图应用:嵌套柱形图用于展示多层次分类的数据,如按店名和化妆品类别分类,明确指定HUE参数以区分不同层次。

数据可视化:通过绘图可以直观地看到不同类别的销售量和销售额,帮助分析和决策。

销售数据与消费者偏好

销售数据分析:分析了不同类别(如清洁、补水等)的销售数据,发现男士主要关注清洁和补水类产品,女士则关注更多类别。

消费者偏好:通过饼图和柱形图展示了男士和女士在美妆产品上的消费偏好,男士偏好清洁和补水类产品,女士则更为多样化。

销售量与销售额对比:男士专用产品的销售量占18.16%,但销售额仅占10%左右,显示出女士在美妆产品上的消费能力更强。


时间因素对销售的影响

销售高峰期分析:通过折线图分析了双11期间的销售数据,发现销售量在11月9日达到高峰,商家应在高峰期前安排促销活动。

销售额变化:销售额在11月10日达到顶峰,随后骤然下降,显示出时间因素对销售额的显著影响。


评论数据分析

评论数与销售数据结合:通过绘制画布和分析评论数据,结合销售数据,可以更全面地了解消费者行为和产品受欢迎程度。

总结

数据分析的重要性:通过数据分析可以发现消费者偏好和市场趋势,帮助企业和个人做出更明智的决策。

数据可视化工具的应用:使用嵌套柱形图、饼图和折线图等工具可以直观展示数据,便于分析和理解。

多维度分析:结合销售量、销售额和评论数等多维度数据,可以更全面地评估市场表现和产品竞争力。

数据处理步骤:初步了解数据后,需要进行数据预处理,主要包括处理缺失值、重复值和异常值。

数据分析流程:数据预处理完成后,进行数据可视化,并根据可视化的结果进行数据分析

相关推荐
没有梦想的咸鱼185-1037-16634 小时前
【高分论文密码】大尺度空间模拟预测与数字制图
信息可视化·数据分析·r语言
二川bro6 小时前
第27节:3D数据可视化与大规模地形渲染
3d·信息可视化
民乐团扒谱机8 小时前
逻辑回归算法干货详解:从原理到 MATLAB 可视化实现
数学建模·matlab·分类·数据挖掘·回归·逻辑回归·代码分享
计算机毕业设计指导11 小时前
基于ResNet50的智能垃圾分类系统
人工智能·分类·数据挖掘
m0_5750463412 小时前
FPGA数据流分析
数据分析·fpga·数据流分析
思辨共悟12 小时前
Python的价值:突出在数据分析与挖掘
python·数据分析
roman_日积跬步-终至千里14 小时前
【软件架构设计(19)】软件架构评估二:软件架构分析方法分类、质量属性场景、软件评估方法发展历程
人工智能·分类·数据挖掘
用户Taobaoapi201415 小时前
京东图片搜索相似商品API开发指南
大数据·数据挖掘·数据分析
带娃的IT创业者15 小时前
《AI大模型应知应会100篇》第69篇:大模型辅助的数据分析应用开发
人工智能·数据挖掘·数据分析
星图云19 小时前
从课前到课后,地理创新实验室赋能教学新范式
信息可视化