基于Flink的用户画像 OLAP 实时数仓统计分析

  • 数据源是来自业务系统的T日数据,利用kakfa进行同步

  • 拼接多个事实表形成大宽表,优化多流Join方式,抽取主键和外键形成主外键前置层,抽取外键和其余内容形成融合层,将4次事实表关联优化称为1次关联,减轻shuffle带来的网络传输,降低延迟和关联state的存储压力

  • 维表采用hbase,存储时采用hash打散rowkey,写入预分区中

    HBase的默认RowKey设计可能导致数据集中在单一Region,易因RowKey分布不均导致RegionServer热点问题。通过散列算法(如MD5、SHA1或简单取模)为RowKey添加固定长度前缀,将数据均匀分散到不同Region中。 具体步骤:

    优化效果

    • 散列前缀生成 :例如,对用户ID取哈希值并取模(hash(user_id) % N),生成固定长度的前缀(如00|01|)。

    • 预分区设计 :根据散列范围预建Region,例如使用HexStringSplit或自定义分区策略(如SPLITS => ['0|','1|','2|',...]),确保数据均匀分布

    • RowKey拼接 :将散列前缀与原始RowKey拼接(如hash_prefix + original_rowkey),写入HBase时自动路由到目标Region。

    • 避免单一Region的写入/查询热点,提升并发吞吐量。

    • 结合预分区减少Region Split频率,降低I/O开销

      |-------------------------|------------------------------------------------|
      | 原rowkey | hash化后的rowkey |
      | 506573390_1474947840000 | ffcbf35613ec83d2ad15ea08576ec496_1474947840000 |

  • flink读取时只需要将截取后半段和rowkey关联就行

  • 根据用户交易、评价等行为分析用户画像,定义flinkcep模式,计算用户风险等级

    复制代码

    SELECT * FROM daily_metrics MATCH_RECOGNIZE ( PARTITION BY user_id ORDER BY window_start MEASURES SUM(A.daily_failed_trans) AS total_failed, SUM(B.daily_high_payment) AS total_high_payment, LAST(C.daily_negative_review) AS last_negative_review, CASE WHEN SUM(A.daily_failed_trans) >=1 AND SUM(B.daily_high_payment) >=1 AND LAST(C.daily_negative_review) >=1 THEN 'HIGH' ELSE 'LOW' END AS risk_level PATTERN (A+ B+ C) WITHIN INTERVAL '7' DAY -- 7天内模式匹配 DEFINE A AS daily_failed_trans >= 1, -- 至少1次失败交易 B AS daily_high_payment >= 1, -- 至少1次大额支付(金额>1万) C AS daily_negative_review >= 1 -- 至少1次差评(评分≤2) );

模式详解

  • A+:匹配连续多日(≥1天)的失败交易

  • B+:匹配连续多日(≥1天)的大额支付

  • C:匹配最后1次差评事件

  • WITHIN限制整体时间窗口为7天

  • 高风险用户写入redis中,提供接口供风控单位调用,全量用户写入doris,上层利用BI可视化工具提供OLAP服务

相关推荐
Hello.Reader1 小时前
Flink ZooKeeper HA 实战原理、必配项、Kerberos、安全与稳定性调优
安全·zookeeper·flink
Hello.Reader5 小时前
Flink 使用 Amazon S3 读写、Checkpoint、插件选择与性能优化
大数据·flink
Hello.Reader6 小时前
Flink 对接 Google Cloud Storage(GCS)读写、Checkpoint、插件安装与生产配置指南
大数据·flink
Hello.Reader6 小时前
Flink Kubernetes HA(高可用)实战原理、前置条件、配置项与数据保留机制
贪心算法·flink·kubernetes
wending-Y8 小时前
记录一次排查Flink一直重启的问题
大数据·flink
Hello.Reader8 小时前
Flink 对接 Azure Blob Storage / ADLS Gen2:wasb:// 与 abfs://(读写、Checkpoint、插件与认证)
flink·flask·azure
Hello.Reader9 小时前
Flink 文件系统通用配置默认文件系统与连接数限制实战
vue.js·flink·npm
Hello.Reader15 小时前
Flink Plugins 机制隔离 ClassLoader、目录结构、FileSystem/Metric Reporter 实战与避坑
大数据·flink
Hello.Reader15 小时前
Flink JobManager 高可用(High Availability)原理、组件、数据生命周期与 JobResultStore 实战
大数据·flink
Hello.Reader15 小时前
Flink 对接阿里云 OSS(Object Storage Service)读写、Checkpoint、插件安装与配置模板
大数据·阿里云·flink