RDD-自定义分区器案例

复制代码
package org.example

import org.apache.spark.{Partitioner, SparkConf, SparkContext}


case class Order(id: Int, price: Double, info: String) {
  override def toString: String = s"$id, $price, $info"
}

class orderPartitioner extends Partitioner{

  override def numPartitions: Int = 3

  override def getPartition(key: Any): Int = {
    //0-1000 => 1
    //1001-2000 => 2
    //3
    if (key.asInstanceOf[Int] <= 1000) {
      0
    } else if (key.toString.toInt <= 2000) {
      1
    } else {
      2
    }
  }
}

object PartitionOrder {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("Partition").setMaster("local[*]")
    val sc = new SparkContext(conf)

    //读入data/order.csv 创建RDD
    val orderRDD = sc.textFile("data/order.csv")

    val rdd1 = orderRDD.map(line => {
      val fields = line.split(",")
      val order = Order(fields(0).toInt, fields(1).toDouble, fields(2))
      (order.id, order)
    })

    val rdd2 = rdd1.partitionBy(new orderPartitioner)

    rdd2.map(x => x._2).saveAsTextFile("data/output1")

    rdd2.mapPartitions(iter => {
      var count = 0

      var sum = 0.0
      iter.foreach(x => {
        sum += x._2.price
        count += 1
      })
      Iterator(s"${count}件, ${sum}元")
    })saveAsTextFile("data/output2")
  }
相关推荐
byte轻骑兵29 分钟前
大数据时代时序数据库选型指南:深度解析与 Apache IoTDB 实践
大数据·apache·时序数据库
NPE~1 小时前
[docker/大数据]Spark快速入门
大数据·分布式·docker·spark·教程
的小姐姐2 小时前
AI与IIOT如何重新定义设备维护系统?_璞华大数据Hawkeye平台
大数据·人工智能
TDengine (老段)3 小时前
TDengine IDMP 最佳实践
大数据·数据库·物联网·ai·时序数据库·tdengine·涛思数据
彬彬醤4 小时前
Mac怎么连接VPS?可以参考这几种方法
大数据·运维·服务器·数据库·线性代数·macos·矩阵
星域智链4 小时前
车载 GPS 与手机导航的终极对决:谁在复杂路况下更胜一筹?
大数据·科技·ai
MaxCode-15 小时前
单智能体篇:Prompt工程艺术
大数据·人工智能·prompt
计算机毕设残哥8 小时前
大数据毕业设计推荐:基于Hadoop+Spark的手机信息分析系统完整方案
大数据·hadoop·课程设计
Hello.Reader9 小时前
Elasticsearch Rails 集成(elasticsearch-model / ActiveRecord)
大数据·elasticsearch·jenkins
代码的余温10 小时前
Elasticsearch核心概念
大数据·elasticsearch·搜索引擎