package org.example
import org.apache.spark.{Partitioner, SparkConf, SparkContext}
case class Order(id: Int, price: Double, info: String) {
override def toString: String = s"$id, $price, $info"
}
class orderPartitioner extends Partitioner{
override def numPartitions: Int = 3
override def getPartition(key: Any): Int = {
//0-1000 => 1
//1001-2000 => 2
//3
if (key.asInstanceOf[Int] <= 1000) {
0
} else if (key.toString.toInt <= 2000) {
1
} else {
2
}
}
}
object PartitionOrder {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("Partition").setMaster("local[*]")
val sc = new SparkContext(conf)
//读入data/order.csv 创建RDD
val orderRDD = sc.textFile("data/order.csv")
val rdd1 = orderRDD.map(line => {
val fields = line.split(",")
val order = Order(fields(0).toInt, fields(1).toDouble, fields(2))
(order.id, order)
})
val rdd2 = rdd1.partitionBy(new orderPartitioner)
rdd2.map(x => x._2).saveAsTextFile("data/output1")
rdd2.mapPartitions(iter => {
var count = 0
var sum = 0.0
iter.foreach(x => {
sum += x._2.price
count += 1
})
Iterator(s"${count}件, ${sum}元")
})saveAsTextFile("data/output2")
}
RDD-自定义分区器案例
懒惰的橘猫2025-05-14 9:26
相关推荐
唐天下文化5 分钟前
居然智家亮相全零售AI火花大会 AI大模型赋能家居新零售的进阶之路gaosushexiangji20 分钟前
应用探析|千眼狼PIV测量系统在职业病防治中的应用1892280486124 分钟前
NY182NY183美光固态颗粒NY186NY188爱吃香菜---www2 小时前
spark-standalone依年南台3 小时前
安装Hadoop并运行WordCount程序TDengine (老段)3 小时前
基于 TSBS 标准数据集下 TimescaleDB、InfluxDB 与 TDengine 性能对比测试报告TDengine (老段)3 小时前
TDengine 在金融领域的应用富能量爆棚4 小时前
Spark缓存-cache依年南台4 小时前
Spark处理过程-案例数据清洗