【Pandas】pandas DataFrame cumprod

Pandas2.2 DataFrame

Computations descriptive stats

方法 描述
DataFrame.abs() 用于返回 DataFrame 中每个元素的绝对值
DataFrame.all([axis, bool_only, skipna]) 用于判断 DataFrame 中是否所有元素在指定轴上都为 True
DataFrame.any(*[, axis, bool_only, skipna]) 用于判断 DataFrame 中是否至少有一个元素在指定轴上为 True
DataFrame.clip([lower, upper, axis, inplace]) 用于截断(限制)DataFrame 中的数值
DataFrame.corr([method, min_periods, ...]) 用于计算 DataFrame 中各列之间的相关系数矩阵(Correlation Matrix)
DataFrame.corrwith(other[, axis, drop, ...]) 用于计算当前 DataFrame 的每一列(或行)与另一个 Series 或 DataFrame 中对应列的相关系数
DataFrame.count([axis, numeric_only]) 用于统计 DataFrame 中每列或每行的非空(非 NaN)元素数量
DataFrame.cov([min_periods, ddof, numeric_only]) 用于计算 DataFrame 中每对列之间的协方差
DataFrame.cummax([axis, skipna]) 用于计算 DataFrame 中每列或每行的累计最大值(cumulative maximum)
DataFrame.cummin([axis, skipna]) 用于计算 DataFrame 中每列或每行的累计最小值(cumulative minimum)
DataFrame.cumprod([axis, skipna]) 用于计算 DataFrame 中每列或每行的累计乘积(cumulative product)

pandas.DataFrame.cumprod()

pandas.DataFrame.cumprod() 方法用于计算 DataFrame 中每列或每行的累计乘积(cumulative product)。该方法返回一个与原 DataFrame 形状相同的对象,每个位置上的值是到该位置为止所有元素的乘积。


参数说明:
  1. axis:{0 or 'index', 1 or 'columns'}, default 0

    • 指定计算方向:
      • 0'index':按列计算(对每一列从上往下累计)
      • 1'columns':按行计算(对每一行从左往右累计)
  2. skipna:bool, default True

    • 如果为 True,则忽略 NaN 值;
    • 如果为 False,遇到 NaN 则结果也为 NaN。

示例代码 1:默认参数(按列累计乘积)
python 复制代码
import pandas as pd

df = pd.DataFrame({
    'A': [1, 2, 3, 4],
    'B': [10, 20, 30, 40]
})

result = df.cumprod()
print(result)
输出结果:
复制代码
    A      B
0   1     10
1   2    200
2   6   6000
3  24  240000

示例代码 2:按行累计乘积(axis=1)
python 复制代码
result = df.cumprod(axis=1)
print(result)
输出结果:
复制代码
    A     B
0   1    10
1   2    40
2   3    90
3   4   160

示例代码 3:包含 NaN 值时 skipna=False 的影响
python 复制代码
import numpy as np

df_with_nan = pd.DataFrame({
    'A': [1, 2, None, 4],
    'B': [None, 2, 3, 4]
})

result = df_with_nan.cumprod(skipna=False)
print(result)
输出结果:
复制代码
     A    B
0  1.0  NaN
1  2.0  NaN
2  NaN  NaN
3  NaN  NaN

总结:
  • cumprod() 适用于需要追踪序列中数值累积效果的场景,如复利计算、连续增长倍数等。
  • 注意数据类型溢出问题,大数据量相乘可能导致整型/浮点型溢出(inf)。
相关推荐
AI小云2 天前
【数据操作与可视化】Pandas数据处理-其他操作
python·pandas
飞梦工作室7 天前
突破 pandas 瓶颈:实时读写 Excel 与超透视汇总函数的双维解决方案
python·excel·pandas
Python大数据分析@7 天前
Vaex :突破pandas,快速分析100G大数据量
pandas
AI小云7 天前
【数据操作与可视化】Pandas数据处理-Series数据结构
开发语言·数据结构·python·numpy·pandas
小兔崽子去哪了9 天前
Numpy、Panads
python·numpy·pandas
一晌小贪欢10 天前
Pandas操作Excel使用手册大全:从基础到精通
开发语言·python·自动化·excel·pandas·办公自动化·python办公
CodeLongBear12 天前
Python数据分析 -- Pandas基础入门学习笔记:从核心概念到实操代码
python·conda·pandas
njxiejing13 天前
Python pandas基础:Series数据操作详解
数据结构·pandas
F_D_Z16 天前
DataFrame中.iloc 属性
pandas·dataframe·.iloc