【Pandas】pandas DataFrame cumprod

Pandas2.2 DataFrame

Computations descriptive stats

方法 描述
DataFrame.abs() 用于返回 DataFrame 中每个元素的绝对值
DataFrame.all([axis, bool_only, skipna]) 用于判断 DataFrame 中是否所有元素在指定轴上都为 True
DataFrame.any(*[, axis, bool_only, skipna]) 用于判断 DataFrame 中是否至少有一个元素在指定轴上为 True
DataFrame.clip([lower, upper, axis, inplace]) 用于截断(限制)DataFrame 中的数值
DataFrame.corr([method, min_periods, ...]) 用于计算 DataFrame 中各列之间的相关系数矩阵(Correlation Matrix)
DataFrame.corrwith(other[, axis, drop, ...]) 用于计算当前 DataFrame 的每一列(或行)与另一个 Series 或 DataFrame 中对应列的相关系数
DataFrame.count([axis, numeric_only]) 用于统计 DataFrame 中每列或每行的非空(非 NaN)元素数量
DataFrame.cov([min_periods, ddof, numeric_only]) 用于计算 DataFrame 中每对列之间的协方差
DataFrame.cummax([axis, skipna]) 用于计算 DataFrame 中每列或每行的累计最大值(cumulative maximum)
DataFrame.cummin([axis, skipna]) 用于计算 DataFrame 中每列或每行的累计最小值(cumulative minimum)
DataFrame.cumprod([axis, skipna]) 用于计算 DataFrame 中每列或每行的累计乘积(cumulative product)

pandas.DataFrame.cumprod()

pandas.DataFrame.cumprod() 方法用于计算 DataFrame 中每列或每行的累计乘积(cumulative product)。该方法返回一个与原 DataFrame 形状相同的对象,每个位置上的值是到该位置为止所有元素的乘积。


参数说明:
  1. axis:{0 or 'index', 1 or 'columns'}, default 0

    • 指定计算方向:
      • 0'index':按列计算(对每一列从上往下累计)
      • 1'columns':按行计算(对每一行从左往右累计)
  2. skipna:bool, default True

    • 如果为 True,则忽略 NaN 值;
    • 如果为 False,遇到 NaN 则结果也为 NaN。

示例代码 1:默认参数(按列累计乘积)
python 复制代码
import pandas as pd

df = pd.DataFrame({
    'A': [1, 2, 3, 4],
    'B': [10, 20, 30, 40]
})

result = df.cumprod()
print(result)
输出结果:
复制代码
    A      B
0   1     10
1   2    200
2   6   6000
3  24  240000

示例代码 2:按行累计乘积(axis=1)
python 复制代码
result = df.cumprod(axis=1)
print(result)
输出结果:
复制代码
    A     B
0   1    10
1   2    40
2   3    90
3   4   160

示例代码 3:包含 NaN 值时 skipna=False 的影响
python 复制代码
import numpy as np

df_with_nan = pd.DataFrame({
    'A': [1, 2, None, 4],
    'B': [None, 2, 3, 4]
})

result = df_with_nan.cumprod(skipna=False)
print(result)
输出结果:
复制代码
     A    B
0  1.0  NaN
1  2.0  NaN
2  NaN  NaN
3  NaN  NaN

总结:
  • cumprod() 适用于需要追踪序列中数值累积效果的场景,如复利计算、连续增长倍数等。
  • 注意数据类型溢出问题,大数据量相乘可能导致整型/浮点型溢出(inf)。
相关推荐
Hello.Reader2 天前
PyFlink 向量化 UDF(Vectorized UDF)Arrow 批传输原理、pandas 标量/聚合函数、配置与内存陷阱、五种写法一网打尽
python·flink·pandas
Hello.Reader2 天前
PyFlink Table API Data Types DataType 是什么、UDF 类型声明怎么写、Python / Pandas 类型映射一文搞懂
python·php·pandas
Hello.Reader2 天前
PyFlink Table API 用户自定义函数(UDF)通用 UDF vs Pandas UDF、打包部署、open 预加载资源、读取作业参数、单元测试
log4j·pandas
海棠AI实验室3 天前
第十六章:小项目 2 CSV → 清洗 → 统计 → 图表 → 报告输出
pandas
逻极3 天前
数据分析项目:Pandas + SQLAlchemy,从数据库到DataFrame的丝滑实战
python·mysql·数据分析·pandas·sqlalchemy
海棠AI实验室3 天前
第十七章 调试与排错:读懂 Traceback 的方法论
python·pandas·调试
kong79069283 天前
Pandas简介
信息可视化·数据分析·pandas
爱喝可乐的老王3 天前
数据分析实践--数据解析购房关键
信息可视化·数据分析·pandas·matplotlib
叫我:松哥3 天前
基于 Flask 的音乐推荐与可视化分析系统,包含用户、创作者、管理员三种角色,集成 ECharts 进行数据可视化,采用混合推荐算法
开发语言·python·信息可视化·flask·echarts·pandas·推荐算法
龙腾AI白云3 天前
10分钟了解向量数据库(3)
pandas·scipy