rust-candle学习笔记11-实现一个简单的自注意力

参考:about-pytorch

定义ScaledDotProductAttention结构体:

rust 复制代码
use candle_core::{Result, Device, Tensor};
use candle_nn::{Linear, Module, linear_no_bias, VarMap, VarBuilder, ops};

struct ScaledDotProductAttention {
    wq: Linear,
    wk: Linear,
    wv: Linear,
    d_model: Tensor,
    device: Device,
}

为ScaledDotProductAttention结构体实现new方法:

rust 复制代码
impl ScaledDotProductAttention {
    fn new(vb: VarBuilder, embedding_dim: usize, out_dim: usize, device: Device) -> Result<Self> {
        Ok(Self { 
            wq: linear_no_bias(embedding_dim, out_dim, vb.pp("wq"))?, 
            wk: linear_no_bias(embedding_dim, out_dim, vb.pp("wk"))?, 
            wv: linear_no_bias(embedding_dim, out_dim, vb.pp("wv"))?,
            d_model: Tensor::new(embedding_dim as f32, &device)?,
            device,
        })
    }
}

为结构体实现Module的forward trait:

rust 复制代码
impl Module for ScaledDotProductAttention {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let q = self.wq.forward(xs)?;
        let k = self.wk.forward(xs)?;
        let v = self.wv.forward(xs)?;
        let attn_score = q.matmul(&k.t()?)?;
        let attn_score = attn_score.broadcast_div(&self.d_model.sqrt()?)?;
        let dim = attn_score.rank() - 1;
        let attn_weights = ops::softmax(&attn_score, dim)?;
        let attn_output = attn_weights.matmul(&v)?;
        Ok(attn_output)
    }
}

融合qkv实现:

定义ScaledDotProductAttentionFusedQKV结构体:

rust 复制代码
struct ScaledDotProductAttentionFusedQKV {
    w_qkv: Linear,
    d_model: Tensor,
    device: Device,
}

为结构体实现new方法:

rust 复制代码
impl ScaledDotProductAttentionFusedQKV {
    fn new(vb: VarBuilder, embedding_dim: usize, out_dim: usize, device: Device) -> Result<Self> {
        Ok(Self { 
            w_qkv: linear_no_bias(embedding_dim, 3*out_dim, vb.pp("w_qkv"))?,
            d_model: Tensor::new(embedding_dim as f32, &device)?,
            device,
        })
    }
}

为结构体实现forward trait:

rust 复制代码
impl Module for ScaledDotProductAttentionFusedQKV {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let qkv = self.w_qkv.forward(xs)?;
        let (batch_size, seq_len, _) = qkv.dims3()?;
        let qkv = qkv.reshape((batch_size, seq_len, 3, ()))?;
        let q = qkv.get_on_dim(2, 0)?;
        let q = q.reshape((batch_size, seq_len, ()))?;
        let k = qkv.get_on_dim(2, 1)?;
        let k = k.reshape((batch_size, seq_len, ()))?;
        let v = qkv.get_on_dim(2, 2)?;
        let v = v.reshape((batch_size, seq_len, ()))?;
        let attn_score = q.matmul(&k.t()?)?;
        let attn_score = attn_score.broadcast_div(&self.d_model.sqrt()?)?;
        let dim = attn_score.rank() - 1;
        let attn_weights = ops::softmax(&attn_score, dim)?;
        let attn_output = attn_weights.matmul(&v)?;
        Ok(attn_output)
    }
}

测试:

rust 复制代码
fn main() -> Result<()> {
    let device = Device::cuda_if_available(0)?;
    let varmap = VarMap::new();
    let vb = VarBuilder::from_varmap(&varmap, candle_core::DType::F32, &device);
    
    let input = Tensor::from_vec(vec![0.43f32, 0.15, 0.89, 
                                                    0.55, 0.87, 0.66,
                                                    0.57, 0.85, 0.64,
                                                    0.22, 0.58, 0.33,
                                                    0.77, 0.25, 0.10,
                                                    0.05, 0.80, 0.55, 
                                                    0.43, 0.15, 0.89, 
                                                    0.55, 0.87, 0.66,
                                                    0.57, 0.85, 0.64,
                                                    0.22, 0.58, 0.33,
                                                    0.77, 0.25, 0.10,
                                                    0.05, 0.80, 0.55], (2, 6, 3), &device)?;
    // let model = ScaledDotProductAttention::new(vb.clone(), 3, 2, device.clone())?;
    let model = ScaledDotProductAttentionFusedQKV::new(vb.clone(), 3, 2, device.clone())?;
    let output = model.forward(&input)?;
    println!("output: {:?}\n", output);
    println!("output: {:?}\n", output.to_vec3::<f32>()?);
    Ok(())
}
相关推荐
天水幼麟1 小时前
动手学深度学习-学习笔记【二】(基础知识)
笔记·深度学习·学习
绿皮的猪猪侠1 小时前
算法笔记上机训练实战指南刷题
笔记·算法·pta·上机·浙大
沧海一笑-dj1 小时前
【51单片机】51单片机学习笔记-课程简介
笔记·学习·51单片机·江科大·江科大学习笔记·江科大单片机·江科大51单片机
老虎06272 小时前
JavaWeb(苍穹外卖)--学习笔记04(前端:HTML,CSS,JavaScript)
前端·javascript·css·笔记·学习·html
大苏打seven3 小时前
Docker学习笔记:Docker网络
笔记·学习·docker
KENYCHEN奉孝4 小时前
Rust征服字节跳动:高并发服务器实战
服务器·开发语言·rust
Green1Leaves4 小时前
pytorch学习-9.多分类问题
人工智能·pytorch·学习
慕y2745 小时前
Java学习第十五部分——MyBatis
java·学习·mybatis
碣石潇湘无限路5 小时前
【AI篇】当Transformer模型开始学习《孙子兵法》
人工智能·学习
陈敬雷-充电了么-CEO兼CTO6 小时前
大模型技术原理 - 基于Transformer的预训练语言模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·aigc·transformer