rust-candle学习笔记11-实现一个简单的自注意力

参考:about-pytorch

定义ScaledDotProductAttention结构体:

rust 复制代码
use candle_core::{Result, Device, Tensor};
use candle_nn::{Linear, Module, linear_no_bias, VarMap, VarBuilder, ops};

struct ScaledDotProductAttention {
    wq: Linear,
    wk: Linear,
    wv: Linear,
    d_model: Tensor,
    device: Device,
}

为ScaledDotProductAttention结构体实现new方法:

rust 复制代码
impl ScaledDotProductAttention {
    fn new(vb: VarBuilder, embedding_dim: usize, out_dim: usize, device: Device) -> Result<Self> {
        Ok(Self { 
            wq: linear_no_bias(embedding_dim, out_dim, vb.pp("wq"))?, 
            wk: linear_no_bias(embedding_dim, out_dim, vb.pp("wk"))?, 
            wv: linear_no_bias(embedding_dim, out_dim, vb.pp("wv"))?,
            d_model: Tensor::new(embedding_dim as f32, &device)?,
            device,
        })
    }
}

为结构体实现Module的forward trait:

rust 复制代码
impl Module for ScaledDotProductAttention {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let q = self.wq.forward(xs)?;
        let k = self.wk.forward(xs)?;
        let v = self.wv.forward(xs)?;
        let attn_score = q.matmul(&k.t()?)?;
        let attn_score = attn_score.broadcast_div(&self.d_model.sqrt()?)?;
        let dim = attn_score.rank() - 1;
        let attn_weights = ops::softmax(&attn_score, dim)?;
        let attn_output = attn_weights.matmul(&v)?;
        Ok(attn_output)
    }
}

融合qkv实现:

定义ScaledDotProductAttentionFusedQKV结构体:

rust 复制代码
struct ScaledDotProductAttentionFusedQKV {
    w_qkv: Linear,
    d_model: Tensor,
    device: Device,
}

为结构体实现new方法:

rust 复制代码
impl ScaledDotProductAttentionFusedQKV {
    fn new(vb: VarBuilder, embedding_dim: usize, out_dim: usize, device: Device) -> Result<Self> {
        Ok(Self { 
            w_qkv: linear_no_bias(embedding_dim, 3*out_dim, vb.pp("w_qkv"))?,
            d_model: Tensor::new(embedding_dim as f32, &device)?,
            device,
        })
    }
}

为结构体实现forward trait:

rust 复制代码
impl Module for ScaledDotProductAttentionFusedQKV {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let qkv = self.w_qkv.forward(xs)?;
        let (batch_size, seq_len, _) = qkv.dims3()?;
        let qkv = qkv.reshape((batch_size, seq_len, 3, ()))?;
        let q = qkv.get_on_dim(2, 0)?;
        let q = q.reshape((batch_size, seq_len, ()))?;
        let k = qkv.get_on_dim(2, 1)?;
        let k = k.reshape((batch_size, seq_len, ()))?;
        let v = qkv.get_on_dim(2, 2)?;
        let v = v.reshape((batch_size, seq_len, ()))?;
        let attn_score = q.matmul(&k.t()?)?;
        let attn_score = attn_score.broadcast_div(&self.d_model.sqrt()?)?;
        let dim = attn_score.rank() - 1;
        let attn_weights = ops::softmax(&attn_score, dim)?;
        let attn_output = attn_weights.matmul(&v)?;
        Ok(attn_output)
    }
}

测试:

rust 复制代码
fn main() -> Result<()> {
    let device = Device::cuda_if_available(0)?;
    let varmap = VarMap::new();
    let vb = VarBuilder::from_varmap(&varmap, candle_core::DType::F32, &device);
    
    let input = Tensor::from_vec(vec![0.43f32, 0.15, 0.89, 
                                                    0.55, 0.87, 0.66,
                                                    0.57, 0.85, 0.64,
                                                    0.22, 0.58, 0.33,
                                                    0.77, 0.25, 0.10,
                                                    0.05, 0.80, 0.55, 
                                                    0.43, 0.15, 0.89, 
                                                    0.55, 0.87, 0.66,
                                                    0.57, 0.85, 0.64,
                                                    0.22, 0.58, 0.33,
                                                    0.77, 0.25, 0.10,
                                                    0.05, 0.80, 0.55], (2, 6, 3), &device)?;
    // let model = ScaledDotProductAttention::new(vb.clone(), 3, 2, device.clone())?;
    let model = ScaledDotProductAttentionFusedQKV::new(vb.clone(), 3, 2, device.clone())?;
    let output = model.forward(&input)?;
    println!("output: {:?}\n", output);
    println!("output: {:?}\n", output.to_vec3::<f32>()?);
    Ok(())
}
相关推荐
冷崖23 分钟前
MySQL异步连接池的学习(五)
学习·mysql
知识分享小能手25 分钟前
Vue3 学习教程,从入门到精通,Axios 在 Vue 3 中的使用指南(37)
前端·javascript·vue.js·学习·typescript·vue·vue3
所愿ღ1 小时前
JavaWeb-Servlet基础
笔记·servlet
岑梓铭2 小时前
考研408《计算机组成原理》复习笔记,第五章(2)——CPU指令执行过程
笔记·考研·408·计算机组成原理·计组
lucky_lyovo3 小时前
自然语言处理NLP---预训练模型与 BERT
人工智能·自然语言处理·bert
焄塰5 小时前
Ansible 管理变量和事实
学习·centos·ansible
oe10196 小时前
读From GPT-2 to gpt-oss: Analyzing the Architectural Advances(续)
笔记·gpt·学习
m0_480502646 小时前
Rust 入门 KV存储HashMap (十七)
java·开发语言·rust
Include everything9 小时前
Rust学习笔记(三)|所有权机制 Ownership
笔记·学习·rust
杜子不疼.10 小时前
《Python学习之文件操作:从入门到精通》
数据库·python·学习