基于深度学习的水果识别系统设计

一、选择YOLOv5s模型

YOLOv5:YOLOv5 是一个轻量级的目标检测模型,它在 YOLOv4 的基础上进行了进一步优化,使其在保持较高检测精度的同时,具有更快的推理速度。YOLOv5 的网络结构更加灵活,可以根据不同的需求选择不同大小的模型,如 YOLOv5s、YOLOv5m、YOLOv5l 和 YOLOv5x,分别对应不同的模型复杂度和性能。

二、设计PyQt界面

三、槽函数绑定信号

界面注册函数

python 复制代码
    def register(self):
        connect=sqlite3.connect('register.db')
        cursor=connect.cursor()
        user_id=self.lineEdit.text()
        password=self.lineEdit_2.text()
        confirm=self.lineEdit_3.text()
        if password==confirm and user_id and password:
            sql='insert into user (user_id, password) values (?, ?)'
            cursor.execute(sql,(user_id,password))
            connect.commit()
            cursor.close()
            connect.close()
            QMessageBox.information(self,"提示","注册成功")
        elif password!=confirm:
            QMessageBox.information(self,"提示","两次密码不一致,请重新输入!")
        else:
            QMessageBox.information(self, "提示", "信息输入错误,请重新输入!")

用的数据库是sqlite3,直接import sqlite3,用起来比较方便。

点击登录按钮,就会调用detect函数,在数据库里查找信息匹配,判断账号和密码是否对应。

python 复制代码
    #打开检测界面
    def detect(self):
        connect=sqlite3.connect('register.db')
        cursor=connect.cursor()
        user_id=self.lineEdit.text()
        password=self.lineEdit_2.text()
        if user_id and password:
            sql='select  user_id,password from user where user_id=? and password=?'
            cursor.execute(sql,(user_id,password))
            connect.commit()
            data=cursor.fetchall()
            if data:
                self.close()
                DetectWin.show()
            else:
                QMessageBox.information(self,"提示","用户名或者密码错误,请重新输入")
            cursor.close()
            connect.close()
        else:
            QMessageBox.information(self,"提示","存在未输入项")

对应的话就会登录到检测界面

检测界面有四个按钮:加载模型、加载数据、开始检测、摄像头检测。

点击加载模型按钮,就会打开文件夹模型的路径。然后选择训练好的模型。

点击加载数据按钮,就会打开数据存放路径的文件夹,选择的数据可以是视频、可以是图片。

点击开始检测按钮,就会调用YOLOv5自带的detect.py代码,模型是你训练好的模型,然后就会开始检测,检测结果直接显示在界面右边,打开输出文件夹,里面是检测结果图片或者视频。

点击摄像头检测,就会调用电脑摄像头然后开始识别物体,检测结果直接实时显示在界面右边。

三、运行效果展示

20250512_175736

四、源码和环境配置

价格可谈,帮你配置环境和代码运行成功,不局限于水果检测,各种检测合适的话都可接

相关推荐
美狐美颜sdk1 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程2 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
有Li2 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝2 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion4 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周4 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享5 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜5 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿5 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_5 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习